Multi-level modeling of gas-fluidized beds

Martin van der Hoef

Mao Ye, Renske Beetstra, Chris Zeilstra

Hans Kuipers

Chemical Reaction Engineering Department of Science & Technology University of Twente

Outline

- **I. Overview of the models**
- **II. Lattice Boltzmann simulations**
- **III. Discrete particle simulations**
- **IV. Two-fluid simulations**
- **V. Outlook and challenges ahead**

I. Overview of the models

Lattice Boltzmann model

Gas phase:

 $\partial_t(\rho_g\vec{u}) + \vec{\nabla}\cdot(\rho_g\vec{u}\vec{u}) = -\varepsilon \vec{\nabla}P - \vec{\nabla}\cdot(\varepsilon\tau) + \beta(\vec{v}-\vec{u})$ **Solid phase:**

$$
\partial_t(\rho_s \vec{v}) + \vec{\nabla} \cdot (\rho_s \vec{v} \vec{v}) = -\vec{\nabla} P_s - \vec{\nabla} \cdot (\varepsilon_s \tau_s) - \beta (\vec{v} - \vec{u})
$$

$$
\tau_{\rm s} = -\mu \left[(\vec{\nabla} \vec{\mathsf{v}}) + (\vec{\nabla} \vec{\mathsf{v}})^{\mathsf{T}} - \frac{2}{3} (\vec{\nabla} \cdot \vec{\mathsf{v}}) \mathsf{I} \right]
$$

Gas: CFD Solid: CFD

Discrete Particle Model

(low resolution)

Gas phase:

 $\partial_t(\rho_g\vec{u}) + \vec{\nabla}\cdot(\rho_g\vec{u}\vec{u}) = -\varepsilon \vec{\nabla}P - \vec{\nabla}\cdot(\varepsilon\tau) + \beta(\vec{v}-\vec{u})$

Solid phase:

Gas: CFD Solid: *"molecular dynamics"*

Drag coefficient β **: empirical relations**

Most popular in chemical engineering

$$
\tilde{\beta} = \frac{\beta d^2}{\mu(1-\varepsilon)} = \begin{cases}\n150 \frac{1-\varepsilon}{\varepsilon} + 1.75 \frac{\text{Re}}{\varepsilon} & \text{Ergun (1952)} \\
18 (1+0.15 \text{ Re}^{0.687}) \varepsilon^{-2.7} & \text{Wen & \text{Vu (1966)}}\n\end{cases}
$$

Other relations:
$$
\tilde{\beta} = 18 \text{ C} (\text{Re}) \varepsilon^{-n}
$$

Foscolo-Gibilaro: $C(\text{Re}) = 1 + \frac{0.44}{24} \text{Re}$

Schiller-Nauman: $C(\text{Re}) = \begin{cases} 1 + 0.15 \text{ Re}^{0.687} & (\text{Re} < 10^3) \\ \frac{0.44}{24} \text{ Re} & (\text{Re} > 10^3) \end{cases}$
 $(C(\text{Re})) = \begin{cases} 1 + 0.15 \text{ Re}^{0.687} & (\text{Re} < 10^3) \\ \frac{0.44}{24} \text{ Re} & (\text{Re} > 1$ Turton-Levenspiel: $C(\text{Re}) = 1 + 0.173 \text{ Re}^{0.657} + \frac{0.413}{24} \left(\frac{\text{Re}}{1 + 16300 \text{Re}^{-1.09}} \right)$ $C(\text{Re})$ = 1 + 0.2625 Re^{0.5} + $\frac{0.413}{24}$ Re = $\left(1 + \frac{0.63}{4.8}$ Re^{1/2})² Dallavalle: Clift-Grace-Weber: $C(\text{Re}) = \begin{cases} 1 + \frac{3}{16} \text{Re} & (\text{Re} < 0.01) \\ 1 + 0.1315 \text{ Re}^{0.82 - 0.05 \log \text{Re}} & (0.01 < \text{Re} < 20) \\ 1 + 0.1935 \text{ Re}^{0.6305} & (20 < \text{Re} < 260) \\ 1.8335 \text{ Re}^{-0.1242 + 0.1558 \log \text{Re}} & (260 < \text{Re} < 1500) \end{cases}$

Lattice Boltzmann Model

(high resolution)

Gas: Lattice Boltzmann

"molecular dynamics"

II. Gas-solid drag force from lattice Boltzmann simulations

- **A. Low Reynolds numbers**
- **B. High Reynolds numbers**
- **C. Binary systems**

A. Drag force for low Reynolds numbers

 $\tilde{\beta} = \frac{\beta d^2}{\mu(1-\varepsilon)}$ $\frac{d}{dx}$ \mathcal{E}_{i} **Darcy (1856): Force Balance:**

Carman-Kozeny approximation:

$$
\kappa = \tfrac{\varepsilon}{\mathsf{k}} \mathsf{r}_{\mathsf{h}}^2
$$

$$
\hat{\beta} = \frac{\varepsilon^2}{1 - \varepsilon} \frac{d^2}{\kappa} \qquad \rightarrow \qquad \begin{array}{c} (1 - \varepsilon)\pi d^2 & 6(1 - \varepsilon) \\\\ \downarrow & \end{array}
$$
\nGamma ≈ 5

\n
$$
\hat{\beta} = \frac{\varepsilon^2}{1 - \varepsilon} \frac{d^2}{\kappa} \qquad \rightarrow \qquad \tilde{\beta} = 180 \frac{1 - \varepsilon}{\varepsilon} \qquad \text{Carman equation}
$$

Lattice Boltzmann Simulations

Simulation details:

- 54 static particles, PBC
- $\varepsilon = 0.4 0.9$
- $d = 8$, 17 and 33 lattice sites
- Results extrapolated to d = ∞

Pressure drop measurements

Liquid: glycerine Bed: glass spheres (ε **= 0.365)**

Wil Paping, Masters Thesis dec. 2004

B. Drag force for $10 < Re < 1000$

Best fit to LBM data for arbitrary Re numbers

$$
\tilde{\beta} = 180 \frac{1-\varepsilon}{\varepsilon} + 18 \varepsilon^3 (1 + 1.5\sqrt{1-\varepsilon})
$$

+ 0.31 $\frac{\text{Re}}{\varepsilon} \left[\frac{\varepsilon^{-1} + 3\varepsilon (1-\varepsilon) + 8.4 \text{ Re}^{-0.343}}{1 + 10^{3(1-\varepsilon)} \text{Re}^{-(5-4\varepsilon)/2}} \right]$

 \bullet

NB: Ergun equation:
$$
\tilde{\beta} = 150 \frac{1-\varepsilon}{\varepsilon} + 1.75 \frac{\text{Re}}{\varepsilon}
$$

C. Drag force in binary systems

$$
\frac{\tilde{\beta}_{i}}{\tilde{\beta}} = \varepsilon y_{i} + (1-\varepsilon) y_{i}^{2} \qquad y_{i} = \frac{d_{i}}{\langle d \rangle}
$$

III. Discrete particle simulations

- **A. Discrete particle model**
- **B. Segregation: effect of the drag model**
- **C. Simulation of fine powders**
- **D. Pressure from DPM simulations**

A. Discrete Particle Model

Gas phase:

$$
\partial_t(\rho_g\vec{u}) + \vec{\nabla}\cdot(\rho_g\vec{u}\vec{u}) = -\varepsilon \vec{\nabla}P - \vec{\nabla}\cdot(\varepsilon\tau) + \beta(\vec{v}-\vec{u})
$$

Solid phase:

$$
\frac{d}{dt} m \vec{v}_i = \sum_j \vec{F}_{ij} - \frac{\beta V_i}{1 - \varepsilon} (\vec{v}_i - \vec{u})
$$
\nParticle-particle interactions

Particle-particle interaction force F_{ii}

•Collision forces : spring-dashpot model

 Electrostatic force \bullet $\vec{F}_{ij} = \frac{Ad}{6} \frac{\vec{n}_{ij}}{s_{ii}^2}$ Cohesive force •

B. Effect of drag on segregation

Binary mixture of 40 000 particles:

Red: 1.5 mm Umf = 0.9 m/s

Blue: 2.5 mm Umf = 1.3 m/s

Fluidized at U = 1.3 m/s

 $\beta_i = \beta$

$$
\beta_{\mathsf{i}} = [\varepsilon \mathsf{y}_{\mathsf{i}} + (1 \!-\! \varepsilon) \mathsf{y}_{\mathsf{i}}^2] \,\beta
$$

Intermezzo: Segregation in vibro-fluidized systems

N. Burtally, P.J. King and Michael Swift

Science 2002

Bronze and glass spheres of the same size (100 µ**m)**

Simulation: $N_p = 25000$ $f = 40Hz$ $\Gamma = a\omega^2/g = 7$

C. Simulation of fine powders (group A)

D. Solids pressure from DPM simulations

Low density: $P_s = \rho_s \theta$ $P_s = \rho_s \theta (1 + y)$ **High density:**

Elastic spheres in vacuum: Carnahan & Stirling (1969)

Inelastic spheres in vacuum:

$$
\mathsf{y_i} = \mathsf{y_e} \left(\frac{1+\mathsf{e}}{2} \right)
$$

Summary

Lattice Boltzmann simulations: drag force

- •Monodisperse: significant deviations with Ergun & Wen/Yu
- •Bidispersity has a much larger effect than currently assumed

Discrete particle simulations

- •Segregation: good agreement with experiments
- A powders: qualitative agreement with the Geldart correlation
- Pressure: excellent agreement with kinetic theory

Two fluid simulations

- •Coefficient of restitution gives rise to heterogeneous structures
- •Reasonable agreement with the experiments for the bubble size

IV. Outlook & Challenges ahead

A. Drag force

- \bullet Bidisperse \rightarrow polydisperse
- Mobility
- Heterogeneity

B. Closures in two-fluid model (monodisperse)

$$
Diag coefficient β → \text{ Lattice Boltzmann}
$$
\n
$$
Solids pressure P_s → P_s = \rho_s \theta (1 + y_i)
$$
\n
$$
y_i = y_e \left(\frac{1 + e}{2}\right)
$$
\n
$$
A = \mu_e \left(\frac{1 + e}{2}\right)
$$
\n
$$
A = \mu_e \left(\frac{1}{2} + \frac{4}{5} + 0.761y_i\right)
$$

Inelastic spheres:

No simulation data available

 $\mu = \frac{1}{\theta \mathrm{V}}\int_0^\infty \langle \tau_\mathrm{xy}(0) \tau_\mathrm{xy}(\mathrm{s}) \rangle \mathrm{d} \mathrm{s}$

 $\epsilon_{\rm s}$

- Effect surrounding gas
	-
- Particle friction
- Cohesive forces
- Polydispersity

C. Two-fluid simulations of Geldart A particles

$$
d = 75 \,\mu m \,, \ \rho_s = 1500 \,\text{kg/m}^3 \quad \rightarrow \quad U_{\rm mb} = 7 \,\text{mm/s}
$$

D. Simulations of industrial scale fluidized beds

Industrial scale column:

- Dimensions: 4 m x 4 m x 8 m
- Gas velocity: 2.5 U_{mf} =0.25 m/s

Emulsion phase properties:

- Density: 400 kg/m³
- Viscosity: 0.1 Pa.s

Bubble properties:

- Initial bubble size: 8 cm
- Maximum bubble size: 80 cm
- Typically ~ 5000 bubbles