

Aggregation and Breakage of Nanoparticle Dispersions in Heterogeneous Turbulent Flows

<u>M. Soos</u>, D. Marchisio^{*}, J. Sefcik, M. Morbidelli Swiss Federal Institute of Technology Zürich, CH *Politecnico di Torino , IT

CFD in Chemical Reaction Engineering Barga, Italy, June 2005

Problem definition - coagulation process

[m]

Problem definition - coagulation process

To have good product quality:

- appropriate morphology
- effective mixing

Turbulent flow

Stirred tank

Taylor-Couette device

Particle/aggregate characterization technique

ETTH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Focused Beam Reflectance Method (LASENTEC)

Probe of FBRM

Aggregation and Breakage kinetics

Assumption about daughter distribution function

Reynolds-averaged mass balance ("CFD & PBE"): (PBE mass based)

$$\frac{\partial n(\xi;\mathbf{x},t)}{\partial t} + \frac{\partial}{\partial x_{i}} \left[\left\langle u_{i} \right\rangle_{t} n(\xi;\mathbf{x},t) \right] - \frac{\partial}{\partial x_{i}} \left[D_{t} \frac{\partial n(\xi;\mathbf{x},t)}{\partial x_{i}} \right] = Aggregation source term$$

$$\frac{1}{2} \int_{1}^{\xi} \left(K_{\xi-\xi',\xi'}^{A} \right) n(\xi-\xi';\mathbf{x},t) n(\xi';\mathbf{x},t) d\xi' - n(\xi;\mathbf{x},t) \int_{1}^{\infty} \left(K_{\xi,\xi'}^{A} \right) n(\xi';\mathbf{x},t) d\xi' \\
+ \int_{\xi}^{\infty} \left(K_{\xi'}^{B} \right) b(\xi|\xi') n(\xi';\mathbf{x},t) d\xi' - \left(K_{\xi}^{B} \right) n(\xi;\mathbf{x},t) \right] Breakage source term$$

Only unknown are the values of aggregation and breakage kernels

There are several numerical approaches to solve this equation:

- Classes method
- Method of moments*
- Monte Carlo method

 $b(\xi|\xi')$ - Daughter distribution function of produced fragments

Aggregation and Breakage rate expressions (kernels) Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Aggregation kernel:

 $K^{A}_{\varepsilon,\varepsilon'} = K^{BA}_{\varepsilon,\varepsilon'} + K^{SA}_{\varepsilon,\varepsilon'}$

Breakage kernel:

$K^B_{\xi} = P_1(G) \left(\xi^{1/d_f}\right)^{P_3}$

$$K_{\xi,\xi'}^{BA} = \frac{2k_BT}{3\mu} \frac{1}{W} \left(\xi^{-1/d_f} + \xi'^{-1/d_f}\right) \left(\xi^{1/d_f} + \xi'^{1/d_f}\right)$$

$$K_{\xi,\xi'}^{SA} = \alpha_{A} G R_{p}^{3} \left(\xi^{1/d_{f}} + \xi'^{1/d_{f}} \right)^{3}$$

 α_A, P_I, P_3, d_f - from experiment or assume G - either from experiment (difficult) or from CFD $G = \left(\frac{\varepsilon}{-1}\right)^{\frac{1}{2}}$

Fractal scaling:

Occupied volume fraction:

$$\phi_{OCC} = \int_1^\infty n(\xi) \ V_{\xi}$$

$$\phi_{occ} \cong 0.5$$

gelation occurs

Connection to light scattering

 w_i - weights of quadrature app. ξ_i - abscissas of quadrature app.

Solution of PBE - QMOM vs. fixed pivot method

ETTH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Quadrature Method Of Moments (QMOM)

$$\frac{\partial m_k(\mathbf{x},t)}{\partial t} + \frac{\partial}{\partial x_i} \left[\left\langle u_i \right\rangle m_k(\mathbf{x},t) \right] - \frac{\partial}{\partial x_i} \left[D_t \frac{\partial m_k(\mathbf{x},t)}{\partial x_i} \right] = \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N K_{i,j}^A \left[\left(\xi_i + \xi_j \right)^k - \xi_i^k - \xi_j^k \right] w_i w_j + \sum_{i=1}^N K_i^B \overline{b}_i^{(k)} w_i - \sum_{i=1}^N K_i^B \xi_i^k w_i$$

quadrature approximation

$$m_k = \int_0^\infty n(\xi) \,\xi^k \mathrm{d}\xi \approx \sum_{i=1}^N w_i \xi_i^k$$

Weights w_i and abscissas ξ_i calculated by PD algorithm

- Steady state is accurately modeled with two nodes (N = 2)
- For lower fractal dimensions $(d_f \le 2)$ larger number of nodes (N = 4 - 5) needed to be used

Estimation of model parameters from experiment

EI THI Eldgenössische Technische Hochschule Zürich Swiss Federal institute of Technology Zurich

Dimensionless form of PBE

$$\frac{d x_{k}(\tau)}{d \tau} = \frac{1}{2} \sum_{i+j=k} \frac{K_{ij}^{A}}{V_{0}G} x_{i}(\tau) x_{j}(\tau) - x_{k}(\tau) \sum_{i=1}^{\infty} \frac{K_{ik}^{A}}{V_{0}G} x_{i}(\tau)$$
$$+ \sum_{m=k+1}^{\infty} \frac{\Gamma_{mk} K_{m}^{B}}{\phi_{0}G} x_{m}(\tau) - \frac{K_{k}^{B}}{\phi_{0}G} x_{k}(\tau)$$
$$x_{i}(\tau) = \frac{N_{i}(\tau)V_{0}}{\phi_{0}} \qquad \tau = t G \phi_{0}$$

 $P_{1}(G), P_{3}$ $P_{1}(G),$

Aggregation is linearly dependent on G $K^{A}_{\xi,\xi'} = \alpha_{A}G\left(\xi^{1/d_{f}} + \xi'^{1/d_{f}}\right)^{3}$

Breakage is nonlinearly dependent on G

$$K^B_{\xi} = P_1(G) \left(\xi^{1/d_f}\right)^{P_3}$$

$$R_P = 1.085 \ \mu \text{m}$$

 $\phi_0 = 5 \times 10^{-5}$ $\alpha_A = 0.2$
 $d_f = 2.1$

$$P_1 = 1.551 \times 10^{12} G^{2.82}$$

 $P_3 = 4$

Dynamics of the system - full CFD (TC)

Taylor-Couette apparatus, 2D simulation, RSM of turbulence

Lumped model (often used in literature):

- particle distribution homogeneous
- \cdot shear rate is everywhere equal to the $\langle G
 angle$

CFD model:

- particle distribution heterogeneous
- shear rate distribution heterogeneous

Homogeneous model:

- particle distribution homogeneous
- shear rate distribution heterogeneous breakage kernels properly averaged over volume

Is the effect of spatial shear rate heterogeneity significant?

$$G_1 = G_2 = G_i = \langle G \rangle$$

$$G_1$$

$$G = \left(\frac{\varepsilon}{\nu}\right)^{1/2}$$

$$\left\langle G\right\rangle^{P_2} \neq \left\langle G^{P_2}\right\rangle \qquad \qquad G_1 \neq G_2 \neq G_i \neq \left\langle G\right\rangle$$

Dynamics of the system - full CFD (TC)

ETH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Assumption about particle distribution homogeneity is valid

Dynamics of the system - full CFD (TC)

ETTH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fluid element trajectories

Fluid element tracking - Process timescales

Homogeneous model:

- particle distribution homogeneous
- aggregation / breakage kernels properly averaged over volume

$$\overline{K}_{\xi,\xi'}^{A} = \frac{1}{V} \int_{V} K_{\xi,\xi'}^{A} (G) dV \qquad \overline{K}_{\xi}^{B} = \frac{1}{V} \int_{V} K_{\xi}^{B} (G) dV$$

Shear rate history

Calculation starts from the steady state distribution corresponding to the starting point of shear rate

Fluid element tracking - Process timescales

- Based on timescales analysis it is possible to decide which model is appropriate for certain conditions
- At low volume fraction (< 4 \times 10⁻⁴) CFD model can by efficiently replaced by homogeneous model
- Kinetic parameters obtained from lumped model are not applicable for different vessel geometry - significant effect of shear rate heterogeneity
- CFD + PBE need to be used already for rather mild solid volume fractions

Note: region of validity of homogeneous model in stirred tank is shifted to left compare to TC

Note: occupied volume fraction can be used to check significance of viscosity on flow field