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Outline

• Delft Flame III
• PDF methods
• Comparison velocity-scalar PDF vs scalar PDF results 
• Sensitivity analysis of scalar PDF results

(role of micromixing model, kinetic model …)
• Conclusions
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OUTLINE

–

PLIF of OH-radical
showing:

- Instantaneous 
flame front position

- Local extinction 

Piloted 
natural-gas / air
jet diffusion flame 
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•Burner dimensions:
Central fuel jet          radius  = 3 mm
Rim                            from 3 mm to 7.5 mm 
Annular air jet          from 7.5 mm to 22.5 mm

Pilot geometry:
12 nozzles of 0.5 mm 
on a circle of 7mm diameter 

Pilot fuel composition: 
mixture of C2H2, H2, air with - equivalence 
ratio 1.4        
- same C/H ratio as main fuel
- thermal power 1 % of power of main flame

Closer view of the burner exit 
with burning pilot flames
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Experimental data base for Delft flame III

• Velocity (LDA)
• Main species and temperature (Raman-Rayleigh)
• Temperature (CARS)
• Minor species (OH-PLIF)
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RANS modeling faces unclosed terms 
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Submodels
• Motion in space

• Micro-mixing 
• IEM (Interaction by Exchange with the Mean)

• CD (modified Curl’s Coalescence/Dispersion)

• EMST (Euclidean Minimum Spanning Tree)

• Chemistry

• Intrinsic Low Dimensional Manifold (ILDM) 
1 non-reacting and 2 reacting scalars

• Skeletal scheme of Correa (16 species, 41 elementary reactions)

• Skeletal scheme of Smooke et al. (16 species, 31 elementary reactions)

• ARM (Augmented Reduced Mechanism): 9 species, 5 global reaction steps 
(derived from GRI2.11, ref. Mallampali)
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IEM

Scalar 1

Scalar 2

MEAN

Micromixing models
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C/D (Modified Curl)

Scalar 1
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Micromixing models
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EMST

Scalar 1

Scalar 2

Micromixing models
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EMST: 
Euclidean Minimal Spanning Tree

• Essential feature: mixing is modeled locally in composition space 
• The particles are divided in two groups, participating and non-

participating in mixing events. Particles change group after a 
randomly chosen time related to turbulent mixing time.

• The EMST for the compositions of the mixing particles is 
determined. 

• The particles mix with neighbours in the EMST.

http://mae.cornell.edu/~laniu/emst. 



14

PDF calculations of Delft flame III
using finite rate chemistry 

3 different 
kinetic schemes

C/D, EMST

C1-chemistry 
with ISAT

IEM, C/D, EMSTNonlinear k-ε
Scalar PDF

B. Merci et al.

ILDM (dim=3) C/Dk-ε+round jet corr.
Velocity scalar PDF

P.A. Nooren
et al.

ChemistryMicromixingVelocity

C1-chemistry: 16 species, 41 reactions

Velocity-scalar PDF : TU Delft code
Scalar PDF: Fluent 6.2
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Radial profiles of
mean axial velocity and
turbulent kinetic energy
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Radial profiles of
mean mixture fraction
and mean temperature
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Experimental results by P.A. Nooren et al.

Joint PDF of temperature and mixture fraction

Points: 
Raman Rayleigh measurements
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Joint PDF of temperature and mixture fraction
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Computational results
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Conclusions part 1

Difference between velocity-scalar PDF results (Nooren)
and scalar PDF results (Merci) mainly due to:

-Difference in chemistry model (ILDM vs C1-scheme)

-Difference in representation of the pilot flame
(as flame or as heat source)
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Sensitivity analysis scalar PDF results

 
Micromixing Cphi Kinetics Pilot power

(W) 
Type of Flame

CD 2 Correa 200 Lifted 
CD 3 Correa 200 Attached 
CD 2 Correa 300 Attached 
CD 2 Smooke 200 Attached 
CD 2 Mallampali 200 Error … 
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Sensitivity results scalar PDF results

Micromixing Cphi Kinetics Pilot power
(W) 

Type of Flame 

EMST 2 Correa 200 Attached 
EMST 2 Smooke 200 Attached 
EMST 2 Mallampalli 200 Attached 
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Conclusions
Need better than standard k-eps to get flow field right

Need detailed chemistry to get local extinction right

Flame type:
IEM predicts blow off 
CD predicts lifted or attached flame depending on details
EMST predicts attached flame

Next steps: 
- use information from 3D simulation of pilot flames
- improve CD micromixing model
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