Lattice Boltzmann Simulations of Breakup, Coalescence and Chemical Mixing

Xinli Jia 1, John B. McLaughlin 1, and Konstantinos Kontomaris1, 2

Computational Fluid Dynamics in Chemical Reaction Engineering IV 1Clarkson University, 2DuPont Engineering Research and Technology Barga, Italy, June 2005

- Explore the possibility of using the lattice Boltzmann method to simulate drop breakup and coalescence.
- Compare the simulation results with existing experimental or theoretical results
- Gain a better understanding of the basic physics associated with changes in interface topology.

Dimensionless groups Dimensionless groups

$$
Ca = \frac{\mu_c Gd}{\sigma}
$$

$$
Re = \frac{Gd^2}{\mu}
$$

$$
We = \frac{du^2 \rho}{\sigma}
$$

capillary number

Reynolds number

Weber number

Characteristics of system

- **equivalent spherical diameter** *d*
- μ_c drop viscosity
- **continuous phase kinematic** ν**viscosity**
- **interfacial tension**σ
- $\rho_{\scriptscriptstyle d}$ density of drop

Breakup in shear flows Breakup in shear flows

In low Reynolds number laminar flows:

- Critical capillary number depends strongly on the viscosity ratio
- Different breakup modes for different viscosity ratios
- If the flow field was suddenly turned off, a highly deformed drop can break.
- Little experimental work available for large Reynolds number laminar shear flows.

Experiments on drop breakup Experiments on drop breakup

Variation of critical Ca with viscosity ratio for simple shear flow. Rallison (1984)

Breakup in turbulent flows Breakup in turbulent flows

- Weber number should be based on the mean square velocity difference across the drop.
- The critical Weber number should be independent of Reynolds number

Hinze (1955)

Coalescence in laminar shear flows Coalescence in laminar shear flows

- *No* drop inertia, all results for Re << 1. ∗
- $Coalescence for Ca < Ca_c$. ∗
- * Typically $Ca_c << 1$. ∗
- *Ca decreases with drop size. c*∗
- *Ca depends on vis cosity ratio. c*∗
- *Ca decreases with impact parameter. c*∗

Experimental results Experimental results

Critical Ca versus Drop Size

Speculation:

$$
Cac = A/d5/6
$$

$$
A = O(10^{-1})
$$

$$
Cac = O(1) \Rightarrow R \sim 10 - 100nm
$$

Theory *Chesters (1991)*

 $Ca_{c} = C/d^{2/3}$

Hu et al. (2000)

Lattice Boltzmann Method Lattice Boltzmann Method

3D-15 velocity lattice

BGK Formulation BGK Formulation

 $f_i(x + e_i, t + 1) = f_i(x, t) + \Omega_i(x, t)$

Collision step: Streaming step: $f_i^c(\mathbf{x}, t+1) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$ $f_i(\mathbf{x} + \mathbf{e}_i, t+1) = f_i^c(\mathbf{x}, t+1)$

$$
\Omega_i = -\frac{f_i(\mathbf{x},t) - f_i^{eq}(\mathbf{x},t)}{\tau}
$$

Oxford Method Oxford Method

$$
f_{\sigma i}(\mathbf{x} + e_{\sigma i} \Delta x, t + \Delta t) - f_{\sigma i}(\mathbf{x}, t) = -\frac{1}{\tau_f} \left[f_{\sigma i}(\mathbf{x}, t) - f_{\sigma i}^{eq}(\mathbf{x}, t) \right]
$$

$$
g_{\sigma i}(\mathbf{x} + e_{\sigma i} \Delta x, t + \Delta t) - g_{\sigma i}(\mathbf{x}, t) = -\frac{1}{\tau_g} \left[g_{\sigma i}(\mathbf{x}, t) - g_{\sigma i}^{eq}(\mathbf{x}, t) \right]
$$

$$
f_{\sigma i}^{eq} = A_{1\sigma} + B_{1\sigma}e_{\sigma i\alpha}u_{\alpha} + C_{1\sigma}u^{2} + D_{1\sigma}e_{\sigma i\alpha}e_{\sigma i\beta}u_{\alpha}u_{\beta} + G_{\sigma\alpha\beta}e_{\sigma i\alpha}e_{\sigma i\beta}
$$

$$
g_{\sigma i}^{eq} = A_{2\sigma} + B_{2\sigma}e_{\sigma i\alpha}u_{\alpha} + C_{2\sigma}u^{2} + D_{2\sigma}e_{\sigma i\alpha}e_{\sigma i\beta}u_{\alpha}u_{\beta}
$$

$$
\sum_{\sigma i} f_{\sigma i}^{eq} = \rho \qquad \qquad \sum_{\sigma i} g_{\sigma i}^{eq} = \varphi
$$
\n
$$
\sum_{\sigma i} f_{\sigma i}^{eq} e_{\sigma i \alpha} = \rho u_{\alpha} \qquad \qquad \sum_{\sigma i} g_{\sigma i}^{eq} e_{\sigma i \alpha} = \varphi u_{\alpha}
$$
\n
$$
\sum_{\sigma i} f_{\sigma i}^{eq} e_{\sigma i \alpha} e_{\sigma i \beta} = P_{\alpha \beta} + \rho u_{\alpha} u_{\beta} \qquad \qquad \sum_{\sigma i} g_{\sigma i}^{eq} e_{\sigma i \alpha} e_{\sigma i \beta} = \Gamma \mu \delta_{\alpha \beta} + \varphi u_{\alpha} u_{\beta}
$$

Binary model Binary model

$$
F = \int \int \frac{A}{2} \varphi^2 + \frac{B}{4} \varphi^4 + \frac{\kappa}{2} (\nabla \varphi)^2 + nT \ln n dV
$$

\n
$$
\mu = A\varphi + B\varphi^3 - \kappa \nabla^2 \varphi
$$

\n
$$
P_{\alpha\beta} = \left[\rho T + \frac{A}{2} \varphi^2 + \frac{3B}{4} \varphi^4 - \kappa \varphi \nabla^2 \varphi - \frac{\kappa}{2} (\nabla \varphi)^2 \right] \delta_{\alpha\beta} + \kappa (\partial_\alpha \varphi)(\partial_\beta \varphi)
$$

If we choose A=-B,the bulk equilibrium solutions are:

$$
\rho_c = \rho_d = l \qquad \qquad \varphi = \pm l
$$

Interfacial thickness

Surface tension

$$
\xi = \sqrt{\frac{\kappa}{B}} \sigma = \kappa \int_{-\infty}^{\infty} \left(\frac{\partial \varphi}{\partial \xi} \right)^2 d\xi = \left[\frac{8 \kappa B}{9} \right]^{1/2}
$$

Simple shear flow Simple shear flow

$$
u = 0
$$

$$
v = Gx
$$

• The criterion for breakup is generally expressed in terms of a critical capillary number

$$
Ca_c = \frac{\mu_c Gd}{\sigma}
$$

Drop deformation Drop deformation

Cox, (1969)

d=60, Ca=1.0 box=180*400*120

Stone et al. (1986)

d=60, Ca=0.7 box=180*400*120

Rumscheidt and Mason (1961)

Turbulent Flow Turbulent Flow

• Weber number should be based on the mean square velocity difference across the bubble for homogeneous turbulence; the critical Weber numbers for breakup should be independent of Reynolds number.

$$
We = \frac{\rho < \Delta u^2 > d_e}{\sigma} \approx \frac{2\rho d_e u'^2}{\sigma}
$$

 $We \thicksim$ $Re_{box} \sim 60$

Shear-induced coalescence induced coalescence

- **Because of shear, drops have different velocities and collide.**
- **Surface tension causes coalescence.**
- **Shear causes the drop to reorient.**

LBM simulation LBM simulation

Drop coalescence Drop coalescence

Re2.115= $Ca = 0.113$

Mixing Result Mixing Result

Sc=100

LBM Re=2.1, t=28,000 *Cox (1969) solution Re=0, t=40,000*

LBM Re=2.1, t=28,000

Self coalescence of Self coalescence of diffusive interfaces diffusive interfaces

The drops coalesce because their interfaces overlap.

- **Example 3 as Exercise 1** and \mathbb{R}^3 The Oxford method is capable of simulating drop breakup and coalescence in laminar and turbulent flows.
- \Diamond The results for drop deformation in laminar shear flow agree well with published results for small and moderate deformations. For breakup, it is important that bulbs form at the ends of a drop; this is true only for sufficiently large drops The result for breakup after zeroing the velocity field is consistent with experiments.
- \Diamond In turbulent flow, drops with large Weber numbers broke down into smaller and smaller drops. This is consistent with Hinze's theory.
- **During coalescence, two impinging jets prevent mixing of a** dissolved chemical. The subsequent mixing agreed with particle tracking simulations using an exact solution for the flow field in a spherical drop.

Acknowledgments Acknowledgments

This work is supported by: NSFDuPont