

CFD Modelling of Turbulent Mass **Transfer** in a Mixing Channel

Lene K. Hjertager Osenbroch, <u>Bjørn H. Hjertager</u> and Tron Solberg Aalborg University Esbjerg Esbjerg, Denmark Homepage: hugin.aue.auc.dk

> Prepared for Computational Fluid Dynamics in Chemical Reaction Engineering IV June 19-24, 2005, Il Ciocco Hotel and Conference Center Barga, Italy

Overview

Objectives Flow Configuration PIV/PLIF Experiment Governing Equations Turbulence and Micromixing Models Numerical Results**Conclusions**

Objectives

Objectives of current project

- **PIV/PLIF measurements of mass transfer and chemical** reactions in turbulent liquid flows
	- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – pure mixing/mass transfer
	- acid-base chemical reaction (Poster presentation)
- CFD modelling of mass transfer and chemical reactions (Poster presentation) in turbulent liquid flows

Flow Configuration

PIV/PLIF System

PIV/PLIF Measurements (1)

Instantanous velocity and concentration

 $C = 1$

 $C = 0$

PIV/PLIF Measurements (2)

П Pure mixing experiment

- Concentration of species A
	- High concentration (C=1) red
	- Low concentration (C=0) blue
- **Instantaneous images at three** different heights
- П Note heterogeneous structures
- Averages produced using 200 images

 $C = 1$

 $\begin{array}{|c|c|}\n\hline\n\end{array}$ C = 0

 $C = 1$

1:1

0.25:1

PIV/PLIF Measurements (3)

Mean concentrations

1:1

0.5:1

0.25:1

PIV/PLIF Measurements (4)

RMS concentrations

1:1

0.5:1

0.25:1

Conservation Equations

Mass

Momentum

$$
\frac{\partial}{\partial x_j} \left(\rho U_j U_i \right) = -\frac{\partial p}{\partial x_j} + \frac{\partial \tau_{ij}}{\partial x_j}; \qquad \tau_{ij} = \left(\mu + \mu_T \right) \cdot \left[\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right] - \frac{2}{3} \delta_{ij} \cdot \rho k
$$

Mixture fraction $(\rho U_j \phi) = \frac{\nu}{2r} \left[\Gamma_\phi \frac{\nu \phi}{2r} \right]; \qquad \Gamma_\phi = \frac{\mu}{r_c} + \frac{\mu_T}{r_c}$ *j* ∂x_j ∂y_j ∂y_j ∂z_j $\frac{U}{X_i}(\rho U_j \phi) = \frac{U}{\partial x_i} \left[\Gamma_\phi \frac{U}{\partial x_i} \right]; \qquad \Gamma_\phi = \frac{V}{Sc} + \frac{V}{Sc}$ φ $\left|\phi\right|$ $\qquad \qquad \mu$ $\frac{\partial}{\partial \phi} (\rho U_i \phi) = \frac{\partial}{\partial \phi} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial \phi} \right); \qquad \Gamma_{\phi} = \frac{\mu}{\alpha} + \frac{\mu}{\alpha}$ $\overline{\partial x_j}$ $(\rho \cup_j \varphi) = \overline{\partial x_j}$ $($ $\overline{\partial x_j}$ $)$ *A*,*b C C* $\phi =$

Turbulence and mixing models

Turbulence Models

- Standard *k-^ε* model
- *RNG k-^ε* model
- Chen-Kim *k-^ε* model

Micromixing model

Multi-peak presumed PDF model (Fox 1998)

Multi-Peak PDF Model (1)

Presumed PDF

$$
f_{\phi}\left(\psi;x,t\right)=\sum_{n=1}^{N_p}p_n(x,t)\delta\left(\psi-\phi_n\left(x,t\right)\right)
$$

Transport equation for probability p_n

$$
\frac{\partial}{\partial t}(\rho \ p_n) + \frac{\partial}{\partial x_j}(\rho \ U_j \ p_n) = \frac{\partial}{\partial x_j} \left(\Gamma_T \ \frac{\partial \ p_n}{\partial x_j}\right) + G_n(p)
$$

Transport equation for probability-weighted concentration *sn*

$$
\frac{\partial}{\partial t}(\rho s_n) + \frac{\partial}{\partial x_j}(\rho U_j s_n) = \frac{\partial}{\partial x_j} \left(\Gamma_T \frac{\partial s_n}{\partial x_j}\right) + M_n(p, s)
$$

Conservation relations

$$
\sum_{n=1}^{N_p} p_n = 1; \quad \sum_{n=1}^{N_p} G_n = 0; \quad \sum_{n=1}^{N_p} M_n = 0
$$

Multi-Peak PDF Model (2)

Local concentration in environment/peak *ⁿ*

$$
\phi_n = \frac{S_n}{p_n}
$$

Mean concentration

$$
\langle \phi \rangle = \sum_{n=1}^{N_p} p_n \phi_n = \sum_{n=1}^{N_p} s_n
$$

Variance of concentration fluctuations

$$
\left\langle \phi'^2 \right\rangle = \sum_{n=1}^{N_p} p_n \phi_n^2 - \left\langle \phi \right\rangle^2
$$

Multi-Peak PDF Model (3)

Five environement/peak micromixing model

Inlet stream

1: Inlet stream 2:

$$
\phi_1 = 1
$$
 $\phi_2 < 1$ $1 > \phi_3 > 0$ $\phi_4 > 0$ $\phi_5 = 0$
\n $p_1 = 1$ $p_2 = 1$

Typical modelling of \boldsymbol{G}_n and \boldsymbol{M}_n for environment/peak 3

 $G_3 = r_2 + r_4 - 2r_3;$ $M_3 = r_2 \phi_2 + r_4 \phi_4 - 2r_3 \phi_3$

L Probability fluxes

 $r_n = \gamma \, p_n$

• Rate of micromixing
$$
\gamma = \frac{1}{\tau_m}
$$
; $\tau_m = \frac{1}{C_\phi} \frac{k}{\varepsilon}$; $C_\phi = 1.0$

Mean Axial Velocity (V)

SORG UNIVERS!

1:1

0.5:1

0.25:1

Mean Transverse Velocity (U)

SORG UNIVERS

1:1

 $0.5:1$ $0.25:1$

Turbulence Velocities

1:1

 $0.5:1$ $0.25:1$

Mean Concentration

Turbulence models; 1:1 case

Turbulent Schmidt number; 1:1 case

Mean Concentration

Concentration Fluctuations

Five-peak presumed P DF model 1:1

Probability Density Functions

Five-peak presumed P DF model 0.5:1

Probability Density Functions

Five-peak presumed P DF model 0.25:1

Probability Density Functions

Overall mixing characteristics

■ Coefficient of variation => Measure of macromixing

$$
Cov = \frac{\sqrt{\frac{N}{\frac{i=1}{N-1}(C_i - \langle C \rangle_A)^2}}}{\langle C \rangle_A}
$$

■ Decay function => Measure of micromixing

$$
d = \frac{\langle c_{\rm rms} \rangle_{A}}{\langle C \rangle_{A}}
$$

Coefficient of variation (CoV) and decay function (d)

1:1

0.5:1

0.25:1

20

y/d

30

40

 0_0^*

10

Concluding remarks (1)

- L. The different *k-^ε* turbulence models do not manage to capture the correct recovery from wake to channel flow, especially for the 1:1 case
- Г The defects in the flow modelling also transfers to the mixing predictions
- L. A reduction of the turbulent Schmidt number (0.15 for 1:1 case and 0.5-0.7 for the other) is needed to achieve good predictions of both mean and rms concentrations
- L. The five-peak presumed PDF model predicts the streamwise decay of micromixing reasonably correct

Concluding remarks (2)

- The concentration PDF's are reasonably predicted by the five-peak presumed PDF model
- Г The overall mixing characteristics (CoV and decay function) are reasonably predicted
- A LES turbulence model is probably required to improve the flow modeling
- Solution of the multi-peak PDF method should use the direct quadratic method of moment (DQMOM) technique