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Introduction
Industrial mixing

Turbulence

ProductsMulti-phase mixing

competitiveness
product quality
process optimization, etc

heat & mass transfer

collisionsparticle/bubble/droplet motion agglomeration/attrition

chemistrybreak-up/coalescence

Lack of insight in 
hydrodynamic phenomena Need for information on …
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Introduction
Scalar mixing; objectives

Contribute to reliable numerical predictions of 
complex, multi-phase processes

Focus: solid-liquid mixing including mass transfer

Complex geometry: Rushton turbine stirred tank

Tools: - LES flow solver (lattice-Boltzmann)
- Scalar transport solver (finite volume) 
- Particle transport solver (extension of the work of Derksen(1))

Applications: crystallization, solubility processes, …

(1) Derksen (2003)



August 8, 2005 5

Realistic description of multi-phase/
chemical reacting processes

Simulation approach

Instantaneous Time-averaged

Colors: kinetic energy

Large Eddy Simulation (LES)

(1) Smagorinsky (1963)
(2) Somers (1993)

Smagorinsky SGS model(1)

Lattice Boltzmann discretization(2)

- Small scale mixing
- Time dependency flow

Large Eddy Simulation
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Simulation approach, cont’d
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Assessment stirred tank flow (LES), Re = ND2/ν = 7,300(1)

(1) Hartmann et al (2004)
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Simulation approach, cont’d
Scalar mixing

Explicit finite volume scheme (LES; small time steps)
Cartesian grid of the flow
Coupled to LES

Flux-limited convection scheme (TVD) 

Staircase-shaped walls inaccurate
wall representation (impeller!)
Impose dc/dn = 0 by means of
ghost cells (2nd order)

No cut cells; no stability problems
Scalar mass conservation not guaranteed

dc/dn=0
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∆ ∆
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∆
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Simulation approach, cont’d
Assessment mixing time experiment, Re = ND2/ν = 24,000(1)

(1) Distelhoff et al (1997)
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concentration fluctuations < 1% final concentration
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Simulation approach, cont’d

limits the applicability to “low” φV

Euler-Lagrange approach
‘Point’ particles; dp < ∆

Particle dynamics
- forces from single-particle

correlations (drag, lift, ...)
- collisions
- simple two-way coupling

Particle-impeller and particle 
wall collisions: fully elastic 

Particle transport(1)

(1) Derksen (2003)

Re = 105
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Simulation approach, cont’d
Solid-liquid mixing including mass transfer

Single-phase LES solver
Scalar mixing solver
Particle transport solver

mass transport crystallization process
solubility process, …

Focus on solubility process

c
csat

φm”

source term FV code: 

mass flux:

φm”=Shρp(Γ/dp)(csat – c)

S = Σp φm
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Simulation approach, cont’d
Flow system, settings

Physical case

T = 0.23 m (10 liter vessel) 

working fluid: water

Re = 105 → N = 16.5 rev/s

7·106 calcium-chloride beads

csat = 600 kg/m3 

Γmol = 0.7·10-9 m2/s (calcium ions)

beads released in upper part (0.9T-T)

dp = 0.3 mm; ρp/ρliq = 2.15

φV = 10% (average 1%)

Njs = 11.4 rev/s
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Results
Animation spatial particle distribution: 0 < Nt ≤ 60

dp / dp0
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Results, cont’d
Animation concentration distribution: 0 < Nt ≤ 20
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Results, cont’d
Snapshots spatial particle distributions (particles 10 times enlarged)
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Results, cont’d
Snapshot of spatial particle and concentration distribution at Nt = 15

The particles are 10 times enlarged
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Results, cont’d
Solubility stages
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Results, cont’d
Evolution particle size distribution in time
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Results, cont’d
Solubility time
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Results, cont’d
Concentration profiles

Unphysical mass increase: 0.12% each impeller revolution

Due to newly developed immersed boundary technique
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Conclusions…

Solubility time at most one order of magnitude larger than
mixing time scale

Four stages identified: mixing and dispersing, quasi steady-state,
resuspension, dissolution

Decreasing particle inertia: streaky patterns disappear

Non-homogeneous mixing effects: development PSD

Scalar transport matches particle transport

Unphysical scalar mass increase is due to newly developed immersed
boundary technique
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… and perspectives

LES including scalar mixing in conjunction with particle transport
has become a promising possibility to study multi-phase processes
in lab-scale reactors

Improvements:

Future direction: crystallization process

- Collision algorithm
- Inclusion hydrodynamic interactions between particles
- Immersed boundary technique for scalars

- Nucleation
- Attrition
- Agglomeration



August 8, 2005 22

Acknowledgement

This work was sponsored by the Netherlands National 

Computing Facilities for the use of supercomputer 

facilities, with financial support from the Netherlands 

Organization for Scientific Research (NWO).


