Numerical Simulation of a Solubility Process in a Stirred Tank Reactor

Hugo Hartmann; Jos J. Derksen; Harry E.A. Van den Akker

Delft University of Technology, The Netherlands

August 8, 2005 August 8, 2005 Computational Fluid Dynamics in Chemical Reaction Engineering IV, Barga, Italy

Kramers Laboratorium voor Fysische Technologie Multi-Scale Physics Department

Delft University of Technology

Outline

Introduction

- industrial mixing
- objective

Simulation approach

- LES (lattice-Boltzmann)
- scalar mixing (finite volume)
- particle transport
- flow system & settings

Results

- solids and scalar distributions
- particle size distribution
- solubility time

Conclusions and perspectives

Introduction

Scalar mixing; objectives

Contribute to reliable numerical predictions of complex, multi-phase processes

 \leq Focus: solid-liquid mixing including mass transfer

 ϵ Complex geometry: Rushton turbine stirred tank

 ϵ Applications: crystallization, solubility processes, ...

- \rightarrow Tools: LES flow solver (lattice-Boltzmann)
	- Scalar transport solver (finite volume)
	- Particle transport solver (extension of the work of Derksen**(1)**)

August 8, 2005

(1) Derksen (2003)

Simulation approach Large Eddy Simulation (LES)

Colors: kinetic energy

(1) Smagorinsky (1963) **(2)** Somers (1993)

August 8, 2005

Assessment stirred tank flow (LES), Re = *ND² /n* = 7,300**(1)**

August 8, 2005 **6 Figure 2018** 6 Contract Contract

(1) Hartmann et al (2004)

Simulation approach, cont'd Scalar mixing

 \le Explicit finite volume scheme (LES; small time steps)

- \leq Cartesian grid of the flow
- Coupled to LES

 \leq Flux-limited convection scheme (TVD)

- \leq Staircase-shaped walls inaccurate wall representation (impeller!)
- \leq Impose dc/dn = 0 by means of ghost cells (2nd order)

 \leq No cut cells; no stability problems \leq Scalar mass conservation not guaranteed

Particle transport**(1)**

 \blacktriangleright Euler-Lagrange approach 'Point' particles; *d^p* < Δ

 \leq Particle dynamics

- forces from *single*-particle correlations (drag, lift, ...)
- collisions
- simple two-way coupling

limits the applicability to "low" f_V

 ϵ Particle-impeller and particle wall collisions: fully elastic

 $Re = 10^5$

August 8, 2005 Participation of the contract o

(1) Derksen (2003)

Solid-liquid mixing including mass transfer

Focus on solubility process

source term FV code:

$$
S\,=\,\Sigma_p\,\,\varphi_m
$$

 $\mathcal I$ mass flux:

d

$$
D_{\rm m}^{\prime\prime} = \text{Shp}_{\rm p}(\Gamma/d_{\rm p})(c_{\rm sat} - c)
$$

August 8, 2005 **10** Number 2008 10 Number 2008 10 Number 2008 10 Number 2008 10 Number 2008 10

Flow system, settings

August 8, 2005 **11** November 2008 11 November 2008 12:00 12:

Physical case

- $\leq T = 0.23$ m (10 liter vessel)
- working fluid: water
- \mathcal{F} *Re* = 10⁵ \rightarrow *N* = 16.5 rev/s
- 7·10⁶ calcium-chloride beads

$$
\ll c_{sat} = 600 \text{ kg/m}^3
$$

- $G_{mol} = 0.7.10^{9} \text{ m}^2/\text{s}$ (calcium ions)
- beads released in upper part (0.9*T*-*T*)

$$
\leq d_p = 0.3
$$
 mm; $\rho_p / \rho_{liq} = 2.15$

 $\leq \phi_v = 10\%$ (average 1%)

$$
\sim N_{\text{js}} = 11.4 \text{ rev/s}
$$

Results

Animation spatial particle distribution: 0 < *Nt* ≤ 60

Results, cont'd

Animation concentration distribution: 0 < *Nt* ≤ 20

Results, cont'd

Snapshots spatial particle distributions (particles 10 times enlarged)

Results, cont'd

Snapshot of spatial particle and concentration distribution at *Nt* = 15

The particles are 10 times enlarged

August 8, 2005 **16 November 2018** 16 November 2018 16 November 2018 16 November 2018 16 November 2016

Conclusions…

- \leq Solubility time at most one order of magnitude larger than mixing time scale
- \leq Four stages identified: mixing and dispersing, quasi steady-state, resuspension, dissolution
- Decreasing particle inertia: streaky patterns disappear
- \leq Non-homogeneous mixing effects: development PSD
- \leq Scalar transport matches particle transport
- Unphysical scalar mass increase is due to newly developed immersed boundary technique

… and perspectives

- LES including scalar mixing in conjunction with particle transport has become a promising possibility to study multi-phase processes in lab-scale reactors
- \leq Improvements:
	- Collision algorithm
	- Inclusion hydrodynamic interactions between particles
	- Immersed boundary technique for scalars
- Future direction: crystallization process
	- Nucleation
	- Attrition
	- Agglomeration

Acknowledgement

This work was sponsored by the Netherlands National

Computing Facilities for the use of supercomputer

facilities, with financial support from the Netherlands

Organization for Scientific Research (NWO).

