Numerical Simulation of a Solubility Process in a Stirred Tank Reactor

Hugo Hartmann; Jos J. Derksen; Harry E.A. Van den Akker

Delft University of Technology, The Netherlands

Computational Fluid Dynamics in Chemical Reaction Engineering IV, Barga, Italy August 8, 2005

Kramers Laboratorium voor Fysische Technologie Multi-Scale Physics Department

Delft University of Technology

Outline

Introduction

- industrial mixing
- objective

Simulation approach

- LES (lattice-Boltzmann)
- scalar mixing (finite volume)
- particle transport
- flow system & settings

FRESULTS

- solids and scalar distributions
- particle size distribution
- solubility time

Conclusions and perspectives

Introduction

Scalar mixing; objectives

Contribute to reliable numerical predictions of complex, multi-phase processes

Focus: solid-liquid mixing including mass transfer

Complex geometry: Rushton turbine stirred tank

Applications: crystallization, solubility processes, ...

- - Scalar transport solver (finite volume)
 - Particle transport solver (extension of the work of Derksen⁽¹⁾)

August 8, 2005

(1) Derksen (2003)

Simulation approach Large Eddy Simulation (LES)

- Realistic description of multi-phase/ chemical reacting processes
 - Small scale mixing
 - Time dependency flow

- ✓ Large Eddy Simulation
- Smagorinsky SGS model⁽¹⁾
- Mattice Boltzmann discretization⁽²⁾

August 8, 2005

⁽¹⁾ Smagorinsky (1963) (2) Somers (1993)

Instantaneous

Colors: kinetic energy

Assessment stirred tank flow (LES), Re = ND^2/n = 7,300⁽¹⁾

August 8, 2005

6

⁽¹⁾ Hartmann et al (2004)

Scalar mixing

- ø Explicit finite volume scheme (LES; small time steps)
- Cartesian grid of the flow
- Coupled to LES
- Flux-limited convection scheme (TVD)
- Staircase-shaped walls inaccurate wall representation (impeller!)
- Impose dc/dn = 0 by means of ghost cells (2nd order)

7

No cut cells; no stability problems
 Scalar mass conservation not guaranteed

Particle transport⁽¹⁾

***** Euler-Lagrange approach ***** 'Point' particles; $d_p < \Delta$

Particle dynamics

- forces from *single*-particle correlations (drag, lift, ...)
- collisions
- simple two-way coupling

limits the applicability to "low" f_V

 Particle-impeller and particle wall collisions: fully elastic

 $Re = 10^{5}$

9

August 8, 2005

(1) Derksen (2003)

Solid-liquid mixing including mass transfer

Focus on solubility process

source term FV code:

$$S = \Sigma_p \phi_m$$

ø mass flux:

¢

$$\rho_m'' = \frac{Sh}{\rho_p} (\Gamma/d_p) (c_{sat} - c)$$

August 8, 2005

Flow system, settings

August 8, 2005

Physical case

- ✓ T = 0.23 m (10 liter vessel)
- working fluid: water
- \mathscr{I} Re = 10⁵ \rightarrow N = 16.5 rev/s

$$\checkmark c_{sat} = 600 \text{ kg/m}^3$$

- $\mathcal{G}_{mol} = 0.7 \cdot 10^{-9} \text{ m}^2/\text{s}$ (calcium ions)
- ✓ beads released in upper part (0.9*T*-*T*)

 $\checkmark \phi_V = 10\%$ (average 1%)

Results

Animation spatial particle distribution: $0 < Nt \le 60$

Results, cont'd

Animation concentration distribution: $0 < Nt \le 20$

Results, cont'd

Snapshots spatial particle distributions (particles 10 times enlarged)

Results, cont'd

Snapshot of spatial particle and concentration distribution at Nt = 15

The particles are 10 times enlarged

Conclusions...

- Solubility time at most one order of magnitude larger than mixing time scale
- Four stages identified: mixing and dispersing, quasi steady-state, resuspension, dissolution
- Ø Decreasing particle inertia: streaky patterns disappear
- Non-homogeneous mixing effects: development PSD
- Scalar transport matches particle transport
- ✓ Unphysical scalar mass increase is due to newly developed immersed boundary technique

August 8, 2005

... and perspectives

- LES including scalar mixing in conjunction with particle transport has become a promising possibility to study multi-phase processes in lab-scale reactors
- - Collision algorithm
 - Inclusion hydrodynamic interactions between particles
 - Immersed boundary technique for scalars
- Future direction: crystallization process
 - Nucleation
 - Attrition
 - Agglomeration

Acknowledgement

This work was sponsored by the Netherlands National

Computing Facilities for the use of supercomputer

facilities, with financial support from the Netherlands

Organization for Scientific Research (NWO).

