CFD Models for Polydisperse Solids Based on the Direct Quadrature Method of Moments

Rodney O. Fox H. L. Stiles Professor Department of Chemical Engineering Iowa State University

Acknowledgements: US National Science Foundation, US Dept. of Energy, Numerous Collaborators ...

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

CFD in CRE IV: Barga, Italy June 19-24, 2005

1

Outline

2

1. Introduction

- Population Balances
- Coupling with CFD
- 2. Population Balances in CFD
 - Population Balance Equation
 - Direct Solvers
 - Quadrature Methods
- 3. Implementation for Gas-Solid Flow
 - Overview of MFIX
 - Polydisperse Solids Model
 - Application of DQMOM
- 4. Two Open Problems

• Number density function (NDF)

particle volume (mass) spatial location

CFD provides a description of the dependence of n(v,a) on x

For multiphase flows, the NDF will include the phase velocities (as in kinetic theory)

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Moments of number density function

$$m_{kl}(x,t) = \int_0^\infty \int_0^\infty v^k a^l n(v,a;x,t) dv da$$

Choice of *k* and *l* depends on what can be measured

Solving for moments in CFD makes the problem tractable due to smaller number of scalars

Multi-fluid model solves for moments from kinetic theory

4

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Physical processes leading to size changes
 - Nucleation $\rightarrow J(x,t)$ produces new particles, coupled to local solubility, and properties of continuous phase
 - Growth \rightarrow G(x,t) mass transfer to surface of existing particles, coupled to local properties of continuous phase
 - Restructuring → particle surface/volume and fractal dimension changes due to shear and/or physio-chemical processes
 - Aggregation/Agglomeration
 particle-particle interactions, coupled to local shear rate, fluid/particle properties
 - Breakage → system dependent, but usually coupled to local shear rate, fluid/particle properties

CFD provides a description of the *local* conditions

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

What can we compare to in-situ experiments?
 Sub-micron particles
 small-angle static light scattering

$$I(0) = C_1 \frac{m_2}{m_1}$$
 zero-angle intensity
$$\langle R_g \rangle = C_2 \left(\frac{m_2(1+d_f)/d_f}{m_2} \right)^{1/2}$$
 radius of gyration 1.8 < d_f <3

Larger particles → optical methods

$$n(L), L = 2\sqrt{A/\pi}$$
 length
 $D_{pf} = 2\ln(P)/\ln(A)$
projected fractal dimension

CFD model should predict measurable quantities accurately

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Coupling with CFD

Do particles follow the flow?
 Stokes number
 Particle diameter

If St > 0.14, particle velocities must be found from a separate momentum equation in the CFD simulation

7

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Coupling with CFD

• Do PBE timescales overlap with flow timescales ?

Residence time
$$\tau = V/q$$

Recirculation time

$$t_c \propto D_T/(N_I D_I)$$
 or D_T/U_j

Local mixing timescale

$$t_u = k / \langle \epsilon \rangle$$

Kolmogorov timescale

$$t_{\eta} = (\nu/\langle \epsilon \rangle)^{1/2}$$

CFD simulations w/o PBE can be used to determine timescales for a particular piece of equipment

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

9

1. Introduction

- Population balances
- Coupling with CFD

2. Population Balances in CFD

- Population Balance Equation
- Direct Solvers
- Quadrature Methods
- 3. Implementation for Gas-Solid Flow
 - Overview of MFIX
 - Polydisperse Solids Model
 - Application of DQMOM
- 4. Two Open Problems

• Typical NDF Transport Equation (small Stokes)

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} (U_i n) = \text{Advection}$$

$$\frac{\partial}{\partial x_i} \left(D_T \frac{\partial n}{\partial x_i} \right) \text{ Diffusion}$$

$$+ J(v) - \frac{\partial}{\partial v} (G(v)n) \text{ Nucleation} + \text{Growth}$$

$$+ \frac{1}{2} \int_0^v \beta(v - s, s)n(v - s)n(s)ds$$

$$- n(v) \int_0^\infty \beta(v, s)n(s)ds$$

$$+ \int_v^\infty b(v|s)a(s)n(s)ds - a(v)n(v) \text{ Breakage}$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Aggregation Kernel

$$\beta(v,s) = \frac{2K_BT}{3\mu W} \left(v^{1/d_f} + s^{1/d_f} \right) \left(v^{-1/d_f} + s^{-1/d_f} \right)$$
Brownian
+ $\gamma \alpha(v,s) v_p \left(v^{1/d_f} + s^{1/d_f} \right)^3$ Shear-induced

Sub-micron aggregates: Brownian >> Shear-induced Breakage and restructuring determine fractal dimension d_f In granular flow, particle-particle collisions must be added

IOWA STATE UNIVERSITY

• Breakage Kernels

$$a(v) = c\gamma \exp\left(-\frac{B(\gamma)}{\gamma^2 R_p v^{1/d_f}}\right)$$
 exponential

$$a(v) = c_1 \gamma^{c_2} \left(R_p v^{1/d_f} \right)^{c_3}$$
 power law

Breakage due to fluid shear only ==> additional term due to collisions in gas-solid flows

Parameters determined empirically and depend on chemical/physical properties of aggregates

12

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Daughter Distribution

$$b(v|s) = \delta(v - fs) + \delta(v - (1 - f)s)$$
 binary

CFD in CRE IV: Barga, Italy June 19-24, 2005

Direct Solvers

Sectional or Class Methods

Accurate predictions for higher-order moments require finer grid (range: 25-120 bins)

14

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Direct Solvers

- Difficulties encountered when coupled with CFD
 - n(v; x, t) represented by N scalars $n_i(x, t)$ where 25 < N < 120
 - Depending on kernels, initial conditions, etc., source terms for these scalars can be stiff
 - If particles are large (measured by Stokes number), multiphase models with N momentum equations required
 - Extension to multi-variate distributions scales like N^D accounting for "morphology" changes will be intractable

Need methods that accurately predict experimentally observable moments, but at low computational cost

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Quadrature Method of Moments (QMOM)

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

• Product-Difference algorithm (univariate CSD)

 $\{m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7\}$ $\{w_1, w_2, w_3, w_4, v_1, v_2, v_3, v_4\}$

Inverse problem solved on the fly in CFD simulation

• Transport 2N moments in CFD simulation

$$\begin{split} \frac{\partial m_k}{\partial t} &+ \frac{\partial}{\partial x_i} \left(U_i m_k \right) = \text{Advection} \\ &\quad \frac{\partial}{\partial x_i} \left(D_T \frac{\partial m_k}{\partial x_i} \right) \text{ Diffusion} \\ &\quad + J_k + \sum_i k v_i^{k-1} G_i w_i \text{ Nucleation + Growth} \\ &\quad + \frac{1}{2} \sum_i \sum_j \left[(v_i + v_j)^k - v_i^k - v_j^k \right] \beta_{ij} w_i w_j \text{ Aggregation} \\ &\quad + \sum_i a_i \left[b_i^{(k)} - v_i^k \right] w_i \text{ Breakage} \end{split}$$

CFD in CRE IV: Barga, Italy June 19-24, 2005

IOWA STATE UNIVERSITY

Quadrature Methods

• Comparison with direct method

Using 2N = 8 scalars, QMOM reproduces the grid-independent moments of the direct method

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Multi-variate extension is straightforward

But inverse problem cannot be solved on the fly!

20

IOWA STATE UNIVERSITY

Direct Quadrature Method of Moments (DQMOM)

$$\frac{\partial w_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n}{\partial x_i} \right) + \alpha_n \quad \text{Weights}$$

$$\frac{\partial w_n v_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n v_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n v_n}{\partial x_i} \right) + \alpha_{1n} \quad \text{Volume}$$

$$\frac{\partial w_n a_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n a_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n a_n}{\partial x_i} \right) + \alpha_{2n} \quad \text{Area}$$

Source terms found from linear system on the fly

$$\sum_{n=1}^{N} (1-k)\phi_n^k \alpha_n + \sum_{n=1}^{N} k\phi_n^{k-1} (c_v \alpha_{1n} + c_a \alpha_{2n}) = R_k$$
$$\phi_n = c_v v_n + c_a a_n$$
IOWA STATE UNIVERSITY

CFD in CRE IV: Barga, Italy June 19-24, 2005

Polydisperse Gas-Solid Flow

• DQMOM with size and momentum of solid phase

$$\frac{\partial w_{\alpha}}{\partial t} + \nabla \cdot (U_{\alpha}w_{\alpha}) = a_{\alpha} \qquad \text{Number}$$

$$\frac{\partial \rho w_{\alpha}v_{\alpha}}{\partial t} + \nabla \cdot (U_{\alpha}\rho w_{\alpha}v_{\alpha}) = \rho b_{\alpha} \qquad \text{Mass}$$

$$\frac{\partial \rho w_{\alpha}v_{\alpha}U_{\alpha}}{\partial t} + \nabla \cdot (\rho w_{\alpha}v_{\alpha}U_{\alpha}U_{\alpha}) = \rho c_{\alpha} \qquad \text{Momentum}$$

Source terms for mass and momentum can be found from kinetic theory for gas-solid flows

Reduces to two-fluid model when $\alpha = 1$

22

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

23

- **1. Introduction**
 - Population Balances
 - Coupling with CFD
- 2. Population Balances in CFD
 - Population Balance Equation
 - Direct Solvers
 - Quadrature Methods
- 3. Implementation for Gas-Solid Flow
 - Overview of MFIX
 - Polydisperse Solids Model
 - Application of DQMOM
- 4. Two Open Problems

Overview of MFIX

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

MFIX Governing Equations (I)

• Mass balances

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{u}_g) = -\sum_{\alpha=1}^N \sum_{n=1}^{N_s} M_{g\alpha n}$$
$$\frac{\partial}{\partial t} (\varepsilon_{s\alpha} \rho_{s\alpha}) + \nabla \cdot (\varepsilon_{s\alpha} \rho_{s\alpha} \mathbf{u}_{s\alpha}) = \sum_{n=1}^N M_{g\alpha n}$$

Mass transfer from gas to solid phases

• Momentum balances

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \mathbf{u}_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{u}_g \mathbf{u}_g) = \nabla \cdot \mathbf{\sigma}_g + \sum_{\alpha=1}^N \mathbf{f}_{g\alpha} + \varepsilon_g \rho_g \mathbf{g}$$
$$\frac{\partial}{\partial t} (\varepsilon_{s\alpha} \rho_{s\alpha} \mathbf{u}_{s\alpha}) + \nabla \cdot (\varepsilon_{s\alpha} \rho_{s\alpha} \mathbf{u}_{s\alpha} \mathbf{u}_{s\alpha}) = \nabla \cdot \mathbf{\sigma}_{s\alpha} - \mathbf{f}_{g\alpha} + \sum_{\beta=1, \beta\neq\alpha}^N \mathbf{f}_{\beta\alpha} + \varepsilon_{s\alpha} \rho_{s\alpha} \mathbf{g}$$

g: Gas phase s α : Solid phases α =1, N Interaction Stress tensor with gas and other solid phases

Body force

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

MFIX Governing Equations (II)

• Thermal energy balances

$$\varepsilon_{g} \rho_{g} C_{pg} \left(\frac{\partial T_{g}}{\partial t} + \mathbf{u}_{g} \cdot \nabla T_{g} \right) = -\nabla \cdot \mathbf{q}_{g} \qquad -\sum_{\alpha=1}^{N} H_{g\alpha} \qquad -\Delta H_{rg} + H_{wall}(T_{wall} - T_{g})$$

$$\varepsilon_{s\alpha} \rho_{s\alpha} C_{ps\alpha} \left(\frac{\partial T_{s\alpha}}{\partial t} + \mathbf{u}_{s\alpha} \cdot \nabla T_{s\alpha} \right) = -\nabla \cdot \mathbf{q}_{s\alpha} \qquad + H_{g\alpha} \qquad -\Delta H_{rs\alpha} \qquad \text{Heat lost to walls}$$

$$\frac{\text{Conductive heat flux}}{\text{between phases}} \qquad \text{Heat of } f_{reaction}$$
• Chemical species balances
$$\frac{\partial}{\partial t} (\varepsilon_{g} \rho_{g} X_{gn}) + \nabla \cdot (\varepsilon_{g} \rho_{g} X_{gn} \mathbf{u}_{g}) = R_{gn} \qquad -\sum_{\alpha=1}^{N} M_{g\alpha n}$$

$$\frac{\partial}{\partial t} (\varepsilon_{s\alpha} \rho_{s\alpha} X_{s\alpha n}) + \nabla \cdot (\varepsilon_{s\alpha} \rho_{s\alpha} X_{s\alpha n} \mathbf{u}_{s\alpha}) = R_{s\alpha n} \qquad + M_{g\alpha n}$$
Reactions Mass transfer

IOWA STATE UNIVERSITY

g: Gas phase s α : Solid phases α =1, N

Polydisperse Solids Model

• Population balance equation for solid phase

CFD in CRE IV: Barga, Italy June 19-24, 2005

27

Direct Quadrature Method of Moments

CFD in CRE IV: Barga, Italy June 19-24, 2005

Modifications to MFIX

• Relation between volume fractions and weights:

$$\varepsilon_{s\alpha} = k_v L_\alpha^3 \omega_\alpha$$

 $k_{\rm v}$: volumetric shape factor

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

• Transport equations for volume fractions and lengths:

$$\frac{\partial(\varepsilon_{s\alpha}\rho_{s\alpha})}{\partial t} + \nabla \cdot (\varepsilon_{s\alpha}\rho_{s\alpha}\mathbf{u}_{s\alpha}) = 3k_{\nu}\rho_{s\alpha}L_{\alpha}^{2}b_{\alpha} - 2k_{\nu}\rho_{s\alpha}L_{\alpha}^{3}a_{\alpha}$$

$$\frac{\partial(\varepsilon_{s\alpha}L_{\alpha}\rho_{s\alpha})}{\partial t} + \nabla \cdot (\varepsilon_{s\alpha}L_{\alpha}\rho_{s\alpha}\mathbf{u}_{s\alpha}) = 4k_{\nu}\rho_{s\alpha}L_{\alpha}^{3}b_{\alpha} - 3k_{\nu}\rho_{s\alpha}L_{\alpha}^{4}a_{\alpha}$$

DQMOM Source Terms

Matrix A relates moments to weights and lengths Source term x is obtained by forcing moments to be exact

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Aggregation and Breakage

CFD in CRE IV: Barga, Italy June 19-24, 2005

Aggregation and Breakage Kernels

Aggregation and breakage kernels are obtained from kinetic theory

Number of collisions:

 $N_{ij} = \pi \omega_i \omega_j \sigma_{ij}^3 g_{ij} \left[\frac{4}{\sigma_{ij}} \left(\frac{\theta_s}{\pi} \frac{m_i + m_j}{2m_i m_j} \right)^{\frac{1}{2}} - \frac{2}{3} (\nabla \cdot \mathbf{u}_s) \right]$

$$\beta_{ij} = \frac{N_{ij}}{\omega_i \omega_j} \psi_a$$

Breakage kernel:

$$a_i = \sum_i \frac{N_{ij}}{\omega_i} \psi_b$$

Efficiencies (ψ_a and ψ_b) depend on temperature, particle size, etc.

32

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

PSD Effect on Fluidization

33

No aggregation and breakage Breakage dominant average size decreases, FB expands

Aggregation dominant average size Increases, FB defluidizes

OF SCIENCE AND TECHNOLOGY

Volume-Average Mean Diameter

N = 2 filled symbols N = 3 empty symbols N = 4 lines

IOWA STATE UNIVERSITY

Volume-Average Normalized Moments

35

N = 2 filled symbols N = 3 empty symbols N = 4 lines

$$m_k\left(\mathbf{x},t\right) = \int_{0}^{+\infty} n\left(L;\mathbf{x},t\right) L^k dL \approx \sum_{\alpha=1}^{N} \omega_{\alpha} L_{\alpha}^k$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Extension to Energy/Species Balances

• Thermal energy balance

$$\varepsilon_{s\alpha}\rho_{s\alpha}C_{ps\alpha}\left(\frac{\partial T_{s\alpha}}{\partial t} + \mathbf{u}_{s\alpha}\cdot\nabla T_{s\alpha}\right) = -\nabla\cdot\mathbf{q}_{s\alpha} + H_{g\alpha} - \Delta H_{rs\alpha} + k_{v}\rho_{s}L_{\alpha}^{3}C_{ps}c_{T,\alpha} - k_{v}\rho_{s}L_{\alpha}^{3}C_{ps}T_{s\alpha}a_{\alpha}$$

Changes due to aggregation and breakage Multi-variate DQMOM

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

37

- 1. Introduction
 - Population Balances
 - Coupling with CFD
- 2. Population Balances in CFD
 - Population Balance Equation
 - Direct Solvers
 - Quadrature Methods
- 3. Implementation for Gas-Solid Flow
 - Overview of MFIX
 - Polydisperse Solids Model
 - Application of DQMOM

4. Two Open Problems

Two Open Problems

1. How to extend DQMOM to systems with unknown fluxes at boundaries in phase space?

Model problem: pure evaporation

Estimate flux in DQMOM variables, test with exact solutions:

Define vectors:Define "cross product": $\mathbf{c} = \mathbf{x} \times \mathbf{x}$ $x_{\alpha} = w_{\alpha} v_{\alpha} / m_0$ Linear constraint: $\sum c_{\alpha} = 0$ $\dot{\mathbf{x}} = d\mathbf{x}/dt$ IOWA STATE UNIVERSITY

CFD in CRE IV: Barga, Italy June 19-24, 2005

Simple case with monotone flux (N = 2):

Harder case with multimode flux (N = 2):

Harder case with N = 3:

Two Open Problems

2. What is "best" choice of moments for multivariate DQMOM?

• Choice of moments affects the condition of matrix

All choices yield nearly same weights and abscissas Choose moments with lowest condition number?

43

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Another example: Williams' Spray Equation

$$\partial_t f + \mathbf{u} \cdot \partial_\mathbf{x} f + \partial_v (R_v f) + \partial_\mathbf{u} \cdot (\mathbf{F} f) = \Gamma$$

$$f(v, \mathbf{u}; \mathbf{x}, t) = \text{volume, velocity number density function}$$

$$R_v = \text{evaporation rate}$$

$$\mathbf{F} = \text{drag force}$$

$$\Gamma = Q^- + Q^+ = \text{coalesence operator}$$

$$Q^- = -\int \int B(|\mathbf{u} - \mathbf{u}^*|, v, v^*) f(v, \mathbf{u}) f(v^*, \mathbf{u}^*) \, dv^* \, d\mathbf{u}^*$$

$$Q^+ = \frac{1}{2} \int \int B(|\mathbf{u}^\diamond - \mathbf{u}^*|, v^\diamond, v^*) f(v^\diamond, \mathbf{u}^\diamond) f(v^*, \mathbf{u}^*) J \, dv^* \, d\mathbf{u}^*$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

CFD in CRE IV: Barga, Italy June 19-24, 2005

44

Coefficients depend on choice of 5*N* moments:

$$\langle v^k u_1^l u_2^m u_3^p \rangle$$

Condition number of A depends on choice of k, l, m, p

In general, A matrix will become singular if 1 < l + m + p

Choose *l*, *m*, *p* = (0,1) and vary *k* to yield 5*N* distinct moments Number: (k, l, m, p) = 0Mass: k = 1, (l, m, p) = 0

X-Mom: k = 1, l = 1 Y-Mom: k = 1, m = 1 Z-Mom: k = 1, p = 1

Is there a general method for choosing moments?

CFD in CRE IV: Barga, Italy June 19-24, 2005

IOWA STATE UNIVERSITY