CFD Models for Polydisperse Solids Based on the Direct Quadrature Method of Moments

Rodney O. Fox H. L. Stiles Professor Department of Chemical Engineering Iowa State University

Acknowledgements: US National Science Foundation, US Dept. of Energy, Numerous Collaborators …

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

2

1. Introduction

- **Population Balances**
- **Coupling with CFD**
- **2. Population Balances in CFD**
	- **Population Balance Equation**
	- **Direct Solvers**
	- **Quadrature Methods**
- **3. Implementation for Gas-Solid Flow**
	- **Overview of MFIX**
	- **Polydisperse Solids Model**
	- **Application of DQMOM**
- **4. Two Open Problems**

 \bullet Number density function (NDF)

particle volume (mass) spatial location

CFD provides a description of the dependence of *n* **(***v,a* **)** on *x*

For multiphase flows, the NDF will include the phase velocities (as in kinetic theory)

IOWA STATE UNIVERSIT OF SCIENCE AND TECHNOLOGY

 \bullet Moments of number density function

$$
m_{kl}(x,t) = \int_0^\infty \int_0^\infty v^k a^l n(v,a;x,t) dv da
$$

Choice of *k* and *l* depends on what can be measured

Solving for moments in CFD makes the problem tractable due to smaller number of scalars

Multi-fluid model solves for moments from kinetic theory

4

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Physical processes leading to size changes
	- \rightarrow Nucleation \rightarrow *J(x,t)* produces new particles, coupled to local solubility, and properties of continuous phase
	- Growth $\rightarrow G(x,t)$ mass transfer to surface of existing particles, coupled to local properties of continuous phase
	- $-$ Restructuring \rightarrow particle surface/volume and fractal dimension changes due to shear and/or physio-chemical processes
	- Aggregation/Agglomeration → particle-particle interactions, coupled to local shear rate, fluid/particle properties
	- Breakage → system dependent, but usually coupled to local shear rate, fluid/particle properties

CFD provides a description of the *local* conditions

5

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

 \bullet What can we compare to in-situ experiments? Sub-micron particles \rightarrow small-angle static light scattering

$$
I(0) = C_1 \frac{m_2}{m_1}
$$
 zero-angle intensity

$$
\langle R_g \rangle = C_2 \left(\frac{m_{2(1+d_f)/d_f}}{m_2} \right)^{1/2}
$$
 radius of gyration 1.8 $d_f 3$

Larger particles \rightarrow optical methods

$$
n(L), L = 2\sqrt{A/\pi} \text{ length}
$$

$$
D_{pf} = 2\ln(P)/\ln(A)
$$

projected fractal dimension

CFD model should predict measurable quantities accurately

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Coupling with CFD

 \bullet Do particles follow the flow? Stokes number Particle diameter

If *St* > 0.14, particle velocities must be found from a separate momentum equation in the CFD simulation

7

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Coupling with CFD

 \bullet Do PBE timescales overlap with flow timescales ?

$$
\text{Residence time}\quad \tau=V/q
$$

Recirculation time

Local mixing timescale

$$
t_c \propto D_T/(N_I D_I)
$$
 or D_T/U_j
 $t_u = k/\langle \epsilon \rangle$

Kolmogorov timescale

$$
t_\eta = (\nu/\langle \epsilon \rangle)^{1/2}
$$

CFD simulations w/o PBE can be used to determine timescales for a particular piece of equipment

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

- **1. Introduction**
	- **Population balances**
	- –**Coupling with CFD**

2. Population Balances in CFD

- **Population Balance Equation**
- **Direct Solvers**
- **Quadrature Methods**
- **3. Implementation for Gas-Solid Flow**
	- **Overview of MFIX**
	- **Polydisperse Solids Model**
	- **Application of DQMOM**
- **4. Two Open Problems**

• Typical NDF Transport Equation (small Stokes)

$$
\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} (U_i n) = \text{Advection}
$$
\n
$$
\frac{\partial}{\partial x_i} \left(D_T \frac{\partial n}{\partial x_i} \right) \text{ Diffusion}
$$
\n
$$
+ J(v) - \frac{\partial}{\partial v} (G(v)n) \text{ Nucleation + Growth}
$$
\n
$$
+ \frac{1}{2} \int_0^v \beta(v - s, s) n(v - s) n(s) ds
$$
\n
$$
- n(v) \int_0^\infty \beta(v, s) n(s) ds
$$
\n
$$
+ \int_v^\infty b(v|s) a(s) n(s) ds - a(v) n(v) \text{ Breakage}
$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

•Aggregation Kernel

$$
\beta(v,s) = \frac{2K_B T}{3\mu W} \left(v^{1/d_f} + s^{1/d_f} \right) \left(v^{-1/d_f} + s^{-1/d_f} \right)
$$
 Brownian
+ $\gamma \alpha(v,s) v_p \left(v^{1/d_f} + s^{1/d_f} \right)^3$ Shear-induced

Sub-micron aggregates: Brownian >> Shear-induced Breakage and restructuring determine fractal dimension $d_{\!f}$ In granular flow, particle-particle collisions must be added

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

•Breakage Kernels

$$
a(v) = c\gamma \exp\left(-\frac{B(\gamma)}{\gamma^2 R_p v^{1/d_f}}\right) \quad \text{exponential}
$$

$$
a(v) = c_1 \gamma^{c_2} \left(R_p v^{1/d_f} \right)^{c_3}
$$
 power law

Breakage due to fluid shear only ==> additional term due to collisions in gas-solid flows

Parameters determined empirically and depend on chemical/physical properties of aggregates

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

 \bullet Daughter Distribution

$$
b(v|s) = \delta(v - fs) + \delta(v - (1 - f)s)
$$
 binary

CFD in CRE IV: Barga, Italy June 19-24, 2005 13

OF SCIENCE AND TECHNOLOGY

Direct Solvers

Accurate predictions for higher-order moments require finer grid (range: 25-120 bins)

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Direct Solvers

- Difficulties encountered when coupled with CFD
	- –*n(v; x, t)* represented by *N* scalars *ni(x,t)* where 25*<N<*120
	- Depending on kernels, initial conditions, etc., source terms for these scalars can be stiff
	- If particles are large (measured by Stokes number), multiphase models with N momentum equations required
	- $-$ Extension to multi-variate distributions scales like N^D accounting for "morphology" changes will be intractable

Need methods that accurately predict experimentally observable moments, but at low computational cost

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

 \bullet Quadrature Method of Moments (QMOM)

IOWA STATE UNIVERSI OF SCIENCE AND TECHNOLOGY

• Product-Difference algorithm (univariate CSD)

 $\{m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7\}$ $\{w_1, w_2, w_3, w_4, v_1, v_2, v_3, v_4\}$

Inverse problem solved on the fly in CFD simulation

IOWA STATE UNIVERSIT OF SCIENCE AND TECHNOLOGY

• Transport 2N moments in CFD simulation

$$
\frac{\partial m_k}{\partial t} + \frac{\partial}{\partial x_i} (U_i m_k) = \text{Advection}
$$
\n
$$
\frac{\partial}{\partial x_i} \left(D_T \frac{\partial m_k}{\partial x_i} \right) \text{ Diffusion}
$$
\n
$$
+ J_k + \sum_i k v_i^{k-1} G_i w_i \text{ Nucleation + Growth}
$$
\n
$$
+ \frac{1}{2} \sum_i \sum_j \left[(v_i + v_j)^k - v_i^k - v_j^k \right] \beta_{ij} w_i w_j \text{ Aggregation}
$$
\n
$$
+ \sum_i a_i \left[b_i^{(k)} - v_i^k \right] w_i \text{ Breakage}
$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Quadrature Methods

•Comparison with direct method

> Using 2*N =* 8 scalars, QMOM reproduces the grid-independent moments of the direct method

> > **IOWA STATE UNIVERSITY** OF SCIENCE AND TECHNOLOGY

• Multi-variate extension is straightforward

But inverse problem cannot be solved on the fly!

IOWA STATE UNIVERS OF SCIENCE AND TECHNOLOGY

 \bullet Direct Quadrature Method of Moments (DQMOM)

$$
\frac{\partial w_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n}{\partial x_i} \right) + \alpha_n \text{ Weights}
$$

$$
\frac{\partial w_n v_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n v_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n v_n}{\partial x_i} \right) + \alpha_{1n} \text{ Volume}
$$

$$
\frac{\partial w_n a_n}{\partial t} + \frac{\partial}{\partial x_i} (U_i w_n a_n) = \frac{\partial}{\partial x_i} \left(D_T \frac{\partial w_n a_n}{\partial x_i} \right) + \alpha_{2n} \text{ Area}
$$

Source terms found from linear system on the fly

$$
\sum_{n=1}^{N} (1-k)\phi_n^k \alpha_n + \sum_{n=1}^{N} k \phi_n^{k-1} (c_v \alpha_{1n} + c_a \alpha_{2n}) = R_k
$$

$$
\phi_n = c_v v_n + c_a a_n
$$
 IOWA STATE UNIVERSITY

CFD in CRE IV: Barga, Italy June 19-24, 2005 21

OF SCIENCE AND TECHNOLOGY

Polydisperse Gas-Solid Flow

DQMOM with size and momentum of solid phase \bullet $\frac{\partial w_{\alpha}}{\partial t} + \nabla \cdot (\mathbf{U}_{\alpha} w_{\alpha}) = a_{\alpha}$
 $\frac{\partial \rho w_{\alpha} v_{\alpha}}{\partial t} + \nabla \cdot (\mathbf{U}_{\alpha} \rho w_{\alpha} v_{\alpha}) = \rho b_{\alpha}$ Number Mass $\frac{\partial \rho w_{\alpha} v_{\alpha} \mathbf{U}_{\alpha}}{\partial t} + \nabla \cdot (\rho w_{\alpha} v_{\alpha} \mathbf{U}_{\alpha} \mathbf{U}_{\alpha}) = \rho c_{\alpha}$ Momentum

Source terms for mass and momentum can be found from kinetic theory for gas-solid flows

Reduces to two-fluid model when α =1

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

- **1. Introduction**
	- **Population Balances**
	- **Coupling with CFD**
- **2. Population Balances in CFD**
	- **Population Balance Equation**
	- –**Direct Solvers**
	- **Quadrature Methods**
- **3. Implementation for Gas-Solid Flow**
	- **Overview of MFIX**
	- **Polydisperse Solids Model**
	- **Application of DQMOM**
- **4. Two Open Problems**

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Overview of MFIX

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

MFIX Governing Equations (I)

•Mass balances

$$
\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{u}_g) = -\sum_{\alpha=1}^N \sum_{n=1}^{N_s} M_{gan}
$$

$$
\frac{\partial}{\partial t}(\varepsilon_{sa} \rho_{sa}) + \nabla \cdot (\varepsilon_{sa} \rho_{sa} \mathbf{u}_{sa}) = \sum_{n=1}^{N_s} M_{gan}
$$

Mass transfer from gas to solid phases

 \bullet Momentum balances

$$
\frac{\partial}{\partial t}(\varepsilon_{g}\rho_{g}\mathbf{u}_{g})+\nabla\cdot(\varepsilon_{g}\rho_{g}\mathbf{u}_{g}\mathbf{u}_{g})=\nabla\cdot\boldsymbol{\sigma}_{g} + \sum_{\alpha=1}^{N}\mathbf{f}_{g\alpha} + \varepsilon_{g}\rho_{g}\mathbf{g}
$$
\n
$$
\frac{\partial}{\partial t}(\varepsilon_{s\alpha}\rho_{s\alpha}\mathbf{u}_{s\alpha})+\nabla\cdot(\varepsilon_{s\alpha}\rho_{s\alpha}\mathbf{u}_{s\alpha}\mathbf{u}_{s\alpha})=\nabla\cdot\boldsymbol{\sigma}_{s\alpha} - \mathbf{f}_{g\alpha} + \sum_{\beta=1,\beta\neq\alpha}^{N}\mathbf{f}_{\beta\alpha} + \varepsilon_{s\alpha}\rho_{s\alpha}\mathbf{g}
$$

g: Gas phase s α : Solid phases α =1, N Stress tensor with gas and Body force **Interaction other solid phases**

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

MFIX Governing Equations (II)

• Thermal energy balances

$$
\varepsilon_{g} \rho_{g} C_{pg} \left(\frac{\partial T_{g}}{\partial t} + \mathbf{u}_{g} \cdot \nabla T_{g} \right) = -\nabla \cdot \mathbf{q}_{g} \qquad -\sum_{\alpha=1}^{N} H_{g\alpha} \qquad -\Delta H_{rg} + H_{wall} (T_{wall} - T_{g})
$$
\n
$$
\varepsilon_{sa} \rho_{sa} C_{ps\alpha} \left(\frac{\partial T_{sa}}{\partial t} + \mathbf{u}_{sa} \cdot \nabla T_{sa} \right) = -\nabla \cdot \mathbf{q}_{sa} \qquad + H_{ga} \qquad -\Delta H_{rsa} \qquad \text{Heat lost}
$$
\n
$$
\text{Conductive Heat transfer} \qquad \text{Heat of} \qquad \text{between phases} \qquad \text{Factor}
$$
\n
$$
\frac{\partial}{\partial t} (\varepsilon_{g} \rho_{g} X_{gn}) + \nabla \cdot (\varepsilon_{g} \rho_{g} X_{gn} \mathbf{u}_{g}) = R_{gn} \qquad -\sum_{\alpha=1}^{N} M_{gan}
$$
\n
$$
\frac{\partial}{\partial t} (\varepsilon_{sa} \rho_{sa} X_{san}) + \nabla \cdot (\varepsilon_{sa} \rho_{sa} X_{san} \mathbf{u}_{sa}) = R_{san} \qquad + M_{gan}
$$
\n
$$
\text{Reactions} \qquad \text{Mass transfer}
$$

g: Gas phase s α : Solid phases α =1, N

Polydisperse Solids Model

•Population balance equation for solid phase

CFD in CRE IV: Barga, Italy June 19-24, 2005 27

OF SCIENCE AND TECHNOLOGY

Direct Quadrature Method of Moments

CFD in CRE IV: Barga, Italy June 19-24, 2005 28

OF SCIENCE AND TECHNOLOGY

Modifications to MFIX

• Relation between volume fractions and weights:

$$
\varepsilon_{s\alpha} = k_{\nu} L_{\alpha}^3 \omega_{\alpha}
$$

k **^v: volumetric shape factor**

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

• Transport equations for volume fractions and lengths:

$$
\frac{\partial(\varepsilon_{s\alpha}\rho_{s\alpha})}{\partial t}+\nabla\cdot(\varepsilon_{s\alpha}\rho_{s\alpha}\mathbf{u}_{s\alpha})=3k_{v}\rho_{s\alpha}L_{\alpha}^{2}b_{\alpha}-2k_{v}\rho_{s\alpha}L_{\alpha}^{3}a_{\alpha}
$$

$$
\frac{\partial(\varepsilon_{sa}L_{\alpha}\rho_{sa})}{\partial t} + \nabla \cdot (\varepsilon_{sa}L_{\alpha}\rho_{sa} \mathbf{u}_{sa}) = 4k_{\nu}\rho_{sa}L_{\alpha}^{3}b_{\alpha} - 3k_{\nu}\rho_{sa}L_{\alpha}^{4}a_{\alpha}
$$

DQMOM Source Terms

Matrix **A** relates moments to weights and lengths Source term **x** is obtained by forcing moments to be exact

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Aggregation and Breakage

CFD in CRE IV: Barga, Italy June 19-24, 2005 31

OF SCIENCE AND TECHNOLOGY

Aggregation and Breakage Kernels

•Aggregation and breakage kernels are obtained from kinetic theory

Number of collisions:

$$
N_{ij} = \pi \omega_i \omega_j \sigma_{ij}^3 g_{ij} \left[\frac{4}{\sigma_{ij}} \left(\frac{\theta_s}{\pi} \frac{m_i + m_j}{2m_i m_j} \right)^{\frac{1}{2}} - \frac{2}{3} (\nabla \cdot \mathbf{u}_s) \right]
$$

Aggregation kernel:

$$
\beta_{ij} = \frac{N_{ij}}{\omega_i \omega_j} \psi_a
$$

Breakage kernel:

$$
a_i = \sum_i \frac{N_{ij}}{\omega_i} \psi_b
$$

Efficiencies (ψ_a and ψ_b) depend on temperature, particle size, etc.

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

PSD Effect on Fluidization

No aggregation and breakage **Breakage dominantaverage size decreases, FB expands**

Aggre gation dominantaverage size Increases, FB defluidizes

IVWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Volume-Average Mean Diameter

 N = 4 lines

CFD in CRE IV: Barga, Italy June 19-24, 2005 34

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Volume-Average Normalized Moments

 N = 2 filled symbols \boldsymbol{N} = 3 empty symbols N = 4 lines

$$
m_{k}(\mathbf{x},t) = \int_{0}^{+\infty} n(L\mathbf{x},t) L^{k} dL \approx \sum_{\alpha=1}^{N} \omega_{\alpha} L_{\alpha}^{k}
$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Extension to Energy/Species Balances

• Thermal energy balance

$$
\varepsilon_{s\alpha} \rho_{s\alpha} C_{ps\alpha} \left(\frac{\partial T_{s\alpha}}{\partial t} + \mathbf{u}_{s\alpha} \cdot \nabla T_{s\alpha} \right) = -\nabla \cdot \mathbf{q}_{s\alpha} + H_{g\alpha} - \Delta H_{rs\alpha}
$$

+ $k_{\nu} \rho_s L_{\alpha}^3 C_{ps} C_{T,\alpha} - k_{\nu} \rho_s L_{\alpha}^3 C_{ps} T_{s\alpha} a_{\alpha}$
Change due to aggregation and breakage

Multi-variate DQMOM

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

- **1. Introduction**
	- **Population Balances**
	- **Coupling with CFD**
- **2. Population Balances in CFD**
	- **Population Balance Equation**
	- –**Direct Solvers**
	- **Quadrature Methods**
- **3. Implementation for Gas-Solid Flow**
	- **Overview of MFIX**
	- **Polydisperse Solids Model**
	- **Application of DQMOM**

4. Two Open Problems

Two Open Problems

1. How to extend DQMOM to systems with unknown fluxes at boundaries in phase space?

Model problem: pure evaporation

Estimate flux in DQMOM variables, test with exact solutions:

Define vectors: Define "cross product": $\mathbf{c} = \mathbf{x} \times \mathbf{x}$ $x_{\alpha} = w_{\alpha}v_{\alpha}/m_0$ Linear constraint: $\sum c_{\alpha}=0$ $\dot{\mathbf{x}} = d\mathbf{x}/dt$ **IOWA STATE UNIVERS**

CFD in CRE IV: Barga, Italy June 19-24, 2005 38

OF SCIENCE AND TECHNOLOGY

Simple case with monotone flux (*N* = 2):

Harder case with multimode flux (*N* = 2):

Harder case with N = 3:

Two Open Problems

2. What is "best" choice of moments for multivariate DQMOM?

OF SCIENCE AND TECHNOLOGY

•Choice of moments affects the condition of matrix

All choices yield nearly same weights and abscissas Choose moments with lowest condition number?

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Another example: Williams' Spray Equation

$$
\partial_t f + \mathbf{u} \cdot \partial_{\mathbf{x}} f + \partial_v (R_v f) + \partial_{\mathbf{u}} \cdot (\mathbf{F} f) = \Gamma
$$

\n
$$
f(v, \mathbf{u}; \mathbf{x}, t) = \text{volume, velocity number density function}
$$

\n
$$
R_v = \text{evaporation rate}
$$

\n
$$
\mathbf{F} = \text{drag force}
$$

\n
$$
\nabla = Q^{-} + Q^{+} = \text{coalesence operator}
$$

\n
$$
Q^{-} = -\int \int B(|\mathbf{u} - \mathbf{u}^*|, v, v^*) f(v, \mathbf{u}) f(v^*, \mathbf{u}^*) dv^* du^*
$$

\n
$$
Q^{+} = \frac{1}{2} \int \int B(|\mathbf{u}^{\circ} - \mathbf{u}^*|, v^{\circ}, v^*) f(v^{\circ}, \mathbf{u}^{\circ}) f(v^*, \mathbf{u}^*) J dv^* du^*
$$

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Coefficients depend on choice of 5 *N* moments:

$$
\langle v^ku_1^lu_2^mu_3^p\rangle
$$

Condition number of **A** depends on choice of *k, l, m, p*

In general, ${\bf A}$ matrix will become singular if ${\bf 1} < {\bm l} + {\bm m} + {\bm p}$

Choose *l, m, p* = $(0,1)$ and vary *k* to yield 5N distinct moments Number: (*k*, *l*, *m*, *p***) = 0** Mass: *k* **=1, (** *l***,** *m***,** *p***) = 0**

X-Mom: *k* **=1,** *l* **= 1** Y-Mom: *k* **= 1,** *m* **= 1** Z -Mom: *k* **= 1,** *p* **= 1**

Is there a general method for choosing moments?

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY