Simulations of solid-liquid suspensions from dilute to dense

Jos Derksen Department of Multi-Scale Physics Delft University of Technology, Delft, Netherlands

jos@klft.tn.tudelft.nl

Kramers Laboratorium voor Fysische Technologie 😾

Acknowledgement

Harrie van den Akker Andreas ten Cate Élisabeth Guazzelli Paul Kelly Li-Shi Luo Sankaran Sundaresan

Outline

 Introduction 		
liquid-solid examples (w	hy do we do this work?)	
Industrial cr	ystallization, fluidization,	
 Dilute systems 		
 a point-particle approa 	ach	~1% solids vol.
 stirred suspensions 		
• DNS with solid-liquid int	erface resolution	
 methodology 		10% colide vol
 particle-particle intera 	ctions in turbulent flow	~10% Solius vol.
 Liquid-solid fluidization 		
 inhomogeneities 		
 bulk viscosity in Euler 	/Euler closure	~50% SONAS VOI.
 Sheared suspensions 		
TU Delft	Kramers Laboratorium voor Fu	

Kramers Laboratorium voor Fysische Technologie 🔊

(G)LS example: industrial crystallization

GS/LS example: fluidization

LS example: sheared granular bed

courtesy François Charru (IMFT)

sedimentation and resuspension

Kramers Laboratorium voor Fysische Technologie 📈

Agitated liquid-solid flow

Issues:

- attrition, formation of fines (role of collisions)
- power consumption
- scale-up

A starting point:

just-suspended experiments: Zwietering (1958); Baldi *et al.* (1978)

$$N_{js} = s \frac{d_{\rho}^{0.2} \,\mu_{L}^{0.1} (g\Delta \rho)^{0.45} \,\phi_{m}^{0.13}}{\rho_{L}^{0.55} \,D^{0.85}}$$

hydrodyn. interaction collisions 2way coupling

with
$$s \approx 15$$
 for $\frac{T}{C} = \frac{T}{D} = 3$

(Rushton turbine in baffled tank)

Kramers Laboratorium voor Fysische Technologie

Single-phase flow: LES

Solid phase dynamics: Lagrangian

Collisions:

- hard-sphere particle-particle and particle-wall collisions
- 2 parameters: restitution coefficient e (=1 mostly) friction coefficient μ_f (=0 mostly)

Derksen, AIChE J 49 (2003)

Kramers Laboratorium voor Fysische Technologie 🎗

Results: impressions $Re = \frac{ND^2}{v} = 10^5$ 10 liter vessel, $d_p=0.3$ mm, $\rho_{part}/\rho_{liq}=2.5, \phi_V=3.6\%, n_p=2.4 \ 10^7$ $St = \frac{\rho_{part}}{\rho_{liq}} \frac{d_p^2 \ 6N}{18v} = O(1)$

Kramers Laboratorium voor Fysische Technologie 🖊

horizontal cross section

Collision mechanics

DNS with interface resolution¹

O(10³) particles in a periodic box

Particles:

Lattice-Boltzmann simulation Fully resolved particles

Turbulence:

Fluctuating bodyforce²

Particle interactions:

Through LB fluid Lubrication forces Hard-sphere p-p collisions

Particle – turbulence interactionCollision statistics

¹ Ten Cate et al. *JFM* 2004 ² Alvelius *PoF* 1999

Kramers Laboratorium voor Fysische Technologie ≯

Lattice-Boltzmann (LB) discretization

Particles move from one lattice site to the other and collide:

$$N_{i}(\mathbf{x} + \mathbf{c}_{i}, t + 1) = N_{i}(\mathbf{x}, t) + \Gamma_{i}(\mathbf{N})$$
$$\rho u_{\alpha} = \sum_{i} c_{i\alpha} N_{i}$$

Space, time, *and velocity* are discretized: *local operations:* good parallel efficiency uniform, cubic lattice

2nd order (space and time) representation of a Navier-Stokes-*like* equation, *e.g.*: $\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial}{\partial x_{\beta}} \rho u_{\alpha} u_{\beta} = -\frac{1}{3} \frac{\partial \rho}{\partial x_{\alpha}} + v \frac{\partial}{\partial x_{\beta}} \left(\frac{\partial \rho u_{\beta}}{\partial x_{\alpha}} + \frac{\partial \rho u_{\alpha}}{\partial x_{\beta}} \right) + f_{\alpha}$ we locity/physical time-step constraint this is incompressible Navier-Stokes if $|\mathbf{u}^{2}| << c_{sound}^{2}$ $p = \frac{\rho}{3} \rightarrow c_{sound} = \sqrt{\frac{1}{3}}$ *TUDelft Kramers Laboratorium voor Fysische Technologie*

Forced turbulence within LB

DNS of decaying homogeneous, isotropic turbulence

 $\nabla \times \mathbf{u}$ contours at 2 moments in time started from same initial condition courtesy Li-Shi Luo

Kramers Laboratorium voor Fysische Technologie

Boundary conditions: forcing method^(1,2)

no-slip at the surface of the moving, spherical particles

- (1) Goldstein et al., *J. Comp. Phys.* **105** (1993) *applied within spectral method*
- (2) Ten Cate et al., *Phys. Fluids* **14** (2002) applied within LB method

at • determine the fluid local velocity by interpolation from •

$$\mathbf{P} \mathbf{u} = \mathbf{u}_{\mathsf{fluid}} - (\mathbf{u}_{\mathsf{particle}} + \mathbf{P}_{\mathsf{particle}} \times \mathbf{r})$$

 $\mathbf{F}^{i+1} = \alpha \mathbf{F}^{i} - \beta \mathbf{?} \mathbf{u}$ $\alpha = 0.95; \beta = 1.8$

distribute \mathbf{F}^{i+1} at \bullet to the lattice-nodes \bullet

 $-\Sigma \mathbf{F}$ is the fluid to particle force

Single-particle tests

Lubrication forces (and torques)*

For particles in close proximity to another particle or a wall

Example: radial lubrication force

* Kim & Karrila: *Microhydrodynamics* (1991) Nguyen & Ladd, *Phys. Rev. E*, **66** (2002)

Hard-sphere collisions

A two parameter model*

- restitution coefficient e
- Coulomb friction coefficient µ_f

default settings: e=1, $\mu_f=0$

no overlap between particles is allowed:

event-driven simulation of particle motion

* Yamamoto et al., JFM, 442 (2001)

Settings for solid-liquid simulations

Particle diameter in grid units: 8 Kolmogorov scale in grid units: 1.2

Vol %	$ρ_p / ρ_f$	N _p
2	1.414	773
5	1.414	2200
10	1.414	3868
5	1.146	2200
5	1.728	2200

Kramers Laboratorium voor Fysische Technologie 📈

Short range interactions (2)

primary collisions:

exponential behavior of the PDF (Poisson-process)

What did we learn?

- Turbulence modulation by particles
- Primary and secondary collision mechanism demonstrated
- Collision time depends on volume fraction Primary/Secondary collision ratio depends on particle inertia

To do

. . . .

compare point-particle LES/DNS and full DNS on periodic domains relative particle velocities collisions statistics

Much denser systems: liquid-solid fluidization

φ_s≈0.5 no turbulence

Same methodology as for turbulent suspension Lattice-Boltzmann method for the fluid flow

> with immersed boundary technique for no-slip at solidliquid interface

Hard-sphere collision algorithm

Lubrication forces

Kramers Laboratorium voor Fysische Technologie

Detailed view of void formation

Onset of 2D instabilities in a flat bed $\frac{\rho_s}{1000} = 16$ 3D domain: $20d_p x 24d_p x 6d_p \quad \phi_{av} = 0.505$ ρ_f Compare to the scenario as measured by Duru & Guazzelli* g * JFM 470 (2002) *e*=1, μ_{*f*}=0 g $(d_{\rho}=1 \text{ mm})$ 1 cm **TU**Delft Kramers Laboratorium voor Fysische Technologie 🔀

Voids in flat beds (ctd)

One step simpler: 1D (narrow) beds

Simulation of L-S fluidization

Wave-speed and wave-shape

Momentum transfer (stress) (2)

influence of collision parameters on $\sigma_{\rm czz}$

Collisional pressure (ϕ_{av} =0.505)

Solids-phase viscosity (ϕ_{av} =0.505)

$$\tau_{zz} = \frac{4}{3}\mu_s \frac{du_{z,p}}{dz}$$

 $\tau_{zz}\!\!:$ deviatoric solids-phase stress

(sum of collisional and pstreaming stress)

$$\begin{array}{c|c}
 I_{s} \\
 80 \\
 40 \\
 0 \\
 0.2 \\
 0.2 \\
 0.3 \\
 0.4 \\
 0.4 \\
 0.5 \\
 0.5 \\
 0.6 \\
 0.7 \\
 \phi_{s}
\end{array}$$

$$\varphi_{av} = 0.488$$
double hump wave relative magnitude of stresses collisional pressure
$$\int_{0}^{0} \varphi_{av} = 0.488 \qquad \int_{0}^{1} \varphi_{a$$

Role of bulk viscosity

Sheared granular beds

Experiment (Charru et al.)

http://www.imft.fr/recherche/interface/ english/theme7/op_2.html

Simulation

Increase Re_{part}: resuspenion in turbulent flow

Sheared suspensions

Momentum transfer in granular-fluid flows

The elementary picture in simple shear due to Bagnold (1954):

"slow" flows: viscous effects dominate: $\sigma \propto \dot{\gamma} v_{fluid}$

"rapid" flows: collisional stress dominates: $\sigma \propto \dot{\gamma} v_{eff} \rightarrow v_{eff} \propto \ell^2 \dot{\gamma} \rightarrow \sigma \propto \dot{\gamma}^2$

Qualitative observations

Summary

- Point particle approach in turbulent liquid-solid systems: possibilities and limitations
 - detailed information on particle motion and collisions in complex flows
 - the physics of two-way coupling and turbulent scales versus particle size → *finite size effects*
- Lattice-Boltzmann-based methodology for the dynamics of (dense) suspensions
- Turbulent suspensions
 - turbulence modification
 - collision dynamics: primary and secondary collisions
- Dense suspensions, fluidization
 - collisional stress dominates in the bulk
 - dilation and compaction behave differently
 - in terms of stresses

Kramers Laboratorium voor Fysische Technologie

Simulation tool for complex fluids

Non-spherical particles fibrous materials concrete (high Stokes numbers)

Colloidal systems self organization

Reservoir engineering

oil recovery by displacement with water

Kramers Laboratorium voor Fysische Technologie

Donev et al., Physical Rev. Lett. 92 (2004)

Levels in process simulation

finer levels

Track every molecule in physical and composition space

Continuum approach: solve the transport equations including appropriate boundary conditions

Disparity of scales (turbulence: *Re*-3/4, particles,...): generalize the continuum approach to coarser levels

Compartmental approaches, population balances,...

derive closure from DNS

LES, RANS, Euler/Euler, KTGM, micromixing models,...

coarser levels

Delft

the interactions we call multi-scale modeling

Kramers Laboratorium voor Fysische Technologie 봈

3D view

